Abstract
Are we in the midst of a paradigm change in biology and have animals and plants lost their individuality, i.e., are even so-called ‘typical’ organisms no longer organisms in their own right? Is the study of the holobiont—host plus its symbiotic microorganisms—no longer optional, but rather an obligatory path that must be taken for a comprehensive understanding of the ecology and evolution of the individual components that make up a holobiont? Or are associated microbes merely a component of their host’s environment, and the holobiont concept is just a beautiful idea that does not add much or anything to our understanding of evolution? This article explores different aspects of the concept of the holobiont. We focus on the aspect of functional integration, a central holobiont property, which is only rarely considered thoroughly. We conclude that the holobiont comes in degrees, i.e., we regard the property of being a holobiont as a continuous trait that we term holobiontness, and that holobiontness is differentiated in several dimensions. Although the holobiont represents yet another level of selection (different from classical individual or group selection because it acts on a system that is composed of multiple species), it depends on the grade of functional integration whether or not the holobiont concept helps to cast light on the various degrees of interactions between symbiotic partners.
Similar content being viewed by others
References
Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13(8): e1002226. doi:10.1371/journal.pbio.1002226
Breeuwer JAJ, Werren JH (1995) Hybrid breakdown between 2 haplodiploid species—the role of nuclear and cytoplasmic genes. Evolution 49:705–717. doi:10.2307/2410324
Brucker RM, Bordenstein SR (2013) The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341:667–669. doi:10.1126/science.1240659
Cerqueda-Garcia D, Martinez-Castilla LP, Falcon LI, Delaye L (2014) Metabolic analysis of Chlorobium chlorochromatii CaD3 reveals clues of the symbiosis in ‘Chlorochromatium aggregatum’. ISME J 8:991–998. doi:10.1038/ismej.2013.207
Chun CK et al (2008) Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc Natl Acad Sci USA 105:11323–11328. doi:10.1073/pnas.0802369105
Cosmides LM, Tooby J (1981) Cytoplasmic inheritance and intragenomic conflict. J Theor Biol 89:83–129
Cummins R (1975) Functional-Analysis. J Philos 72:741–765. doi:10.2307/2024640
DePriest PT (2004) Early molecular investigations of lichen-forming symbionts: 1986–2001*. Annu Rev Microbiol 58:273–301. doi:10.1146/annurev.micro.58.030603.123730
Finegold SM, Sutter VL, Mathisen GE (1983) Human intestinal microflora in health and disease. Academic Press, New York
Frostl JM, Overmann J (1998) Physiology and tactic response of the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 169:129–135
Gadau J, Page RE, Werren JH (1999) Mapping of hybrid incompatibility loci in Nasonia. Genetics 153:1731–1741
Gibson JD, Niehuis O, Peirson BRE, Cash EI, Gadau J (2013) Genetic and developmental basis of F-2 hybrid breakdown in Nasonia Parasitoid Wasps. Evolution 67:2124–2132. doi:10.1111/evo.12080
Gilbert SF, Bosch TC, Ledon-Rettig C (2015) Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 16:611–622. doi:10.1038/nrg3982
Godfrey-Smith P (2009) Darwinian Populations and Natural Selection. Oxford University Press, New York
Grice EA, Segre JA (2011) The skin microbiome Nat Rev Microbiol 9:244–253. doi:10.1038/nrmicro2537
Griesemer JR (2014) Reproduction and the scaffolded development of hybrids. In: Caporael LRGJR, Wimsatt WC (eds) Developing scaffolding in evolution, cognition and culture. MIT Press, Cambridge, pp 23–55
Guerrero R, Margulis L, Berlanga M (2013) Symbiogenesis: the holobiont as a unit of evolution. Int Microbiol 16:133–144. doi:10.2436/20.1501.01.188
Heath KD, Tiffin P (2007) Context dependence in the coevolution of plant and rhizobial mutualists. Proc R Soc B 274:1905–1912. doi:10.1098/rspb.2007.0495
Herren JK, Paredes JC, Schupfer F, Arafah K, Bulet P, Lemaitre B (2014) Insect endosymbiont proliferation is limited by lipid availability. eLife 3:e02964. doi:10.7554/eLife.02964
Hölldobler B, Wilson EO (2009) The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. Norton, New York
Hull DL (1980) Individuality and Selection Annu Rev Ecol Syst 11:311–332. doi:10.1146/annurev.es.11.110180.001523
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633. doi:10.1038/nrmicro1705
Karakashian SJ, Karakashian MW, Rudzinska MA (1968) Electron microscopie observations on the symbiosis of Paramecium bursaria and its intracellular algae J Protozool 15:113–128. doi:10.1111/j.1550-7408.1968.tb02095.x
Kremer N et al (2013) Initial Symbiont Contact Orchestrates Host-Organ-wide Transcriptional Changes that Prime Tissue Colonization. Cell Host Microbe 14:183–194. doi:10.1016/j.chom.2013.07.006
Krohs U (2009) Functions as based on a concept of general design. Synthese 166:69–89. doi:10.1007/s11229-007-9258-6
Krohs U (2011) Functions and fixed types: Biological and other functions in the post-adaptationist era Appl Ontol 6:125–139. doi:10.3233/Ao-2011-0089
Lamarcq LH, McFall-Ngai MJ (1998) Induction of a gradual, reversible morphogenesis of its host’s epithelial brush border by Vibrio fischeri. Infect Immun 66:777–785
von Bertalanffy L (1968) General system theory: foundations, development, applications. George Braziller, New York
Leggat W et al. (2007) The hologenome theory disregards the coral holobiont Nat Rev Microbiol 5. doi:10.1038/nrmicro1635-c1
Liebig J, Poethke HJ (2004) Queen lifespan and colony longevity in the ant Harpegnathos saltator. Ecol Entomol 29:203–207. doi:10.1111/J.1365-2311.2004.00583.X
Liu Z et al (2013) Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium “Chlorochromatium aggregatum”. Genome Biol 14:R127. doi:10.1186/gb-2013-14-11-r127
Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven
Margulis L (2003) Symbiosis in cell evolution. W. H. Freeman & Co., New York
McFall-Ngai M (2014a) Divining the essence of symbiosis: insights from the squid-vibrio model. PLoS Biol 12:e1001783. doi:10.1371/journal.pbio.1001783
McFall-Ngai MJ (2014b) The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu Rev Microbiol 68:177–194. doi:10.1146/annurev-micro-091313-103654
McFall-Ngai M et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236. doi:10.1073/pnas.1218525110
Millikan RG (1984) Language, Thought, and Other Biological Categories: New Foundations for Realism Bradford/MIT Press. Mass, Cambridge
Mindell DP (1992) Phylogenetic consequences of symbioses: Eukarya and Eubacteria are not monophyletic taxa. Biosystems 27:53–62
Minelli A (2016) Scaffolded biology Theory in Biosciences 135:163–173
Montgomery MK, McFall-Ngai M (1994) Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes Development 120:1719–1729
Moran NA, Baumann P (2000) Bacterial endosymbionts in animals Curr Opin Microbiol 3:270–275. doi:10.1016/S1369-5274(00)00088-6
Moran NA, Sloan DB (2015) The Hologenome Concept: helpful or Hollow? PLoS Biol 13:e1002311. doi:10.1371/journal.pbio.1002311
Mossio M, Saborido C, Moreno A (2009) An Organizational Account of Biological Functions Brit J Philos Sci 60:813–841. doi:10.1093/bjps/axp036
Nash TH (2008) Lichen Biology. Cambridge University Press, Cambridge
Neander K (1991) Functions as Selected Effects - the Conceptual Analysts Defense. Philos Sci 58:168–184. doi:10.1086/289610
Niehuis O, Judson AK, Gadau J (2008) Cytonuclear genic incompatibilities cause increased mortality in male F-2 hybrids of Nasonia giraulti and N. vitripennis. Genetics 178:413–426. doi:10.1534/genetics.107.080523
Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ (2000) Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci USA 97:10231–10235. doi:10.1073/Pnas.97.18.10231
O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702
Ott T et al (2009) Absence of symbiotic leghemoglobins alters bacteroid and plant cell differentiation during development of lotus japonicus root nodules. Mol Plant Microbe Interact 22:800–808. doi:10.1094/MPMI-22-7-0800
Peeters C (1997) In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, New York
Peter IS, Davidson EH (2010) The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 340:188–199. doi:10.1016/j.ydbio.2009.10.037
Reeve HK, Holldobler B (2007) The emergence of a superorganism through intergroup competition. Proc Natl Acad Sci USA 104:9736–9740. doi:10.1073/pnas.0703466104
Rosenberg E, Zilber-Rosenberg I (2013) The hologenome concept: human, animal and plant microbiota. Springer, New York
Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci R Soc 250:91–98. doi:10.1098/rspb.1992.0135
Saborido C, Mossio M, Moreno A (2011) Biological organization and cross-generation functions. Brit J Philos Sci 62:583–606. doi:10.1093/bjps/axq034
Stouthamer R, Breeuwert JA, Luck RF, Werren JH (1993) Molecular identification of microorganisms associated with parthenogenesis. Nature 361:66–68. doi:10.1038/361066a0
Theis KR et al (2016) Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1(2):e00028-16. doi:10.1128/mSystems.00028-16
van Ham RCHJ et al (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100:581–586. doi:10.1073/pnas.0235981100
van Oppen MJH (2004) Mode of zooxanthella transmission does not affect zooxanthella diversity in acroporid corals. Mar Biol 144:1–7. doi:10.1007/s00227-003-1187-4
van Opstal EJ, Bordenstein SR (2015) MICROBIOME. Rethinking heritability of the microbiome. Science 349:1172–1173. doi:10.1126/science.aab3958
Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407. doi:10.1146/annurev.genet.39.110304.095751
Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735. doi:10.1111/j.1574-6976.2008.00123.x
Acknowledgements
Support by the Münster Graduate School of Evolution (MGSE) to DF, KF, and GL is gratefully acknowledged. This work was supported by Santander Universities with a fellowship to JG for his stay (19.05-15.08.2014) in the Evolution Think Tank of the MGSE. This manuscript was conceived during a workshop on Multilevel Selection at the MGSE and owes much to the inspiring discussions with Seth Bordenstein who was one of the invited participants.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Catania, F., Krohs, U., Chittò, M. et al. The hologenome concept: we need to incorporate function. Theory Biosci. 136, 89–98 (2017). https://doi.org/10.1007/s12064-016-0240-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12064-016-0240-z