Abstract
The concept of biological diversity has inspired important discussions throughout the history of ecology. Although its meaning and usefulness have been questioned, it is currently one of the key artifacts of ecology. One way to try to understand why such a concept has undergone so many discussions is to examine its emergence and history from the epistemology perspective. In the present work, we investigated how the emergence of mechanical objectivity (as an epistemic virtue) and trained judgment affected how ecologists address the concept of biological diversity. Thus, we employed the theoretical framework of objectivity (provided by Daston and Galison in Objectivity. Zone Books, New York, 2007) to analyze different periods of scientific literature in ecology (“initial period”: end of the nineteenth century and beginning of the twentieth century; “intermediate period”: mid-twentieth century; “contemporary period”: from the second half of the 1980s). Our results showed that the emergence of mechanical objectivity and trained judgment affected biological diversity research. In particular, the ideal of objectivity behind the way in which the concept of biological diversity is addressed in different fields of contemporary ecology could not be the same.
Similar content being viewed by others
Notes
Evidently, Clements directed his criticism at Plantesamfund, published in 1895, the original for the English version of Oecology of plants, 1909, which we are employing in the present study.
It is possible that such guidance reflects the reliance of Clements on his organismic conception of the vegetation, with each species occurrence being mechanistically related to the species present previously. One who conceives of vegetation in this manner certainly should propose that replicate quadrats to sample vegetation in space are unnecessary, and should invest efforts in the analysis of how species are temporally related in a local plot.
References
Acot P (1990) História da Ecologia. Editora Campus, Rio de Janeiro
Bengtsson J (1998) Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Appl Soil Ecol 10(3):191–199. doi:10.1016/S09291393(98)00120-6
Box JF (1978) R. A. Fisher, the life of a scientist. Wiley, New Jersey
Caliman A, Pires AF, Esteves FA, Bozelli RL, Farjalla VF (2009) The prominence of and biases in biodiversity and ecosystem functioning research. Biodivers Conserv 19(3):651–664. doi:10.1007/s10531-009-9725-0
Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405(6783):234–242. doi:10.1038/35012241
Clements FE (1905) Research methods in ecology. The University Publishing Company, Lincoln
Daston L (1992) Objectivity and the escape from perspective. Soc Stud Sci 22(4):597–618
Daston L, Galison P (1992) The image of objectivity. Representations 40(40):81–128
Daston L, Galison P (2007) Objectivity. Zone Books, New York
de Mazancourt C, Isbell F, Larocque A, Berendse F, De Luca E, Grace JB, Haegeman B, Wayne Polley H, Roscher C, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Loreau M (2013) Predicting ecosystem stability from community composition and biodiversity. Ecol Lett 16(5):617–625. doi:10.1111/ele.12088
Di Poi C, Diss G, Freschi L (2011) Biodiversity matters in a changing world. Biol Let 7(1):4–6
Díaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11):646–655. doi:10.1016/S0169-5347(01)02283-212
Egerton FN (2001) A history of the ecological sciences: early Greek origins. Bull Ecol Soc Am 82(1):93–97
Egerton FN (2007) History of ecological sciences, part 34: a changing economy of nature. Bull Ecol Soc Am 88(1):21–41. doi:10.1890/0012-9623(2007)88
Egerton FN (2012) Roots of ecology: antiquity to Haeckel. University of California Press, Berkeley
Farber P (1982) The transformation of natural history in the nineteenth century. J Hist Biol 15(1):145–152. doi:10.1007/BF00132008
Fisher RA, Corbet S, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12(1):42–58
Goodland RJ (2007) The tropical origin of ecology: Eugen Warming’s jubilee. Oikos 26(2):240. doi:10.2307/3543715
Guilarov A (1996) What does “biodiversity” mean—scientific problem or convenient myth? Trends Ecol Evol 11(7):304–306
Hairston NG (1959) Species abundance and community organization. Ecology 40(3):404–416
Hamilton AJ (2005) Species diversity or biodiversity? J Environ Manag 75(1):89–92
Hempel C (1983) Valuation and objectivity in science. In: Cohen RS, Laudan L (eds) Physics, philosophy and psychoanalysis. Boston studies in the philosophy of science, vol 76. Springer Netherlands, Dordrecht
Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35. doi:10.1890/04-0922
Hubálek Z (2000) Measures of species diversity in ecology: an evaluation. Folia Zool Praha 49(4):241–260
Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52(4):577–586. doi:10.2307/1934145
Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477(7363):199–202
Klein AL (2000) Eugen Warming e o cerrado brasileiro: um século depois. Unesp, São Paulo
Lloyd M (1964) Weighting individuals by reproductive value in calculating species diversity. Am Nat 98(900):190–192
Longino HE (1990) Science as social knowledge: values and objectivity in scientific inquiry. Princeton University Press, Princeton
Loreau M (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808. doi:10.1126/science.1064088
Loreau M, de Mazancourt C (2013) Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16(S1):106–115. doi:10.1111/ele.12073
Loreau M, Downing A, Emmerson M, Gonzalez A, Hughes J, Inchausti P, Joshi J, Norberg J, Sala O (2002a) A new look at the relationship between diversity and stability. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 79–91
Loreau M, Naeem S, Inchausti P (eds) (2002b) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford
MacArthur RH (1965) Patterns of species diversity. Biol Rev 40(4):510–533
MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42(3):594–598
MacIntyre A (1978) Objectivity in morality and objectivity in science. In: Englehardt HT, Callahan D (eds) Morals, science and sociality. Hastings Center, Garrison, pp 21–39
Maclaurin J, Sterelny K (2008) What is biodiversity?. University of Chicago Press, Chicago
Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton
McIntosh RP (1985) The background of ecology: concept and theory. Cambridge University Press, Cambridge
Monti MR, Singy P (2009) Snowflakes and spiritual exercises. Iris 1(2009):277–288
Naeem S (2002) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83(2):1537–1552
Naeem S, Loreau M, Inchausti P (2002) Biodiversity and ecosystem functioning: the emergence of a synthetic ecological framework. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 3–17
Peet RK (1974) The measurement of species diversity. Annu Rev Ecol Syst 5:285–307
Petchey OL, Hector A, Gaston KJ (2004) How do different measures of functional diversity perform? Ecology 85(3):847–857. doi:10.1890/03-0226
Pielou EC (1966a) Shannon’s formula as a measure of specific diversity: its use and misuse. Am Nat 100(914):463–465
Pielou EC (1966b) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144
Porter TM (1995) Trust in numbers: the pursuit of objectivity in science and public life. Princeton University Press, Princeton
Porter TM (2007) Eras of judgement. Nature 449(7165):985–987
Primack RB (2012) A primer of conservation biology, 5th edn. Sinauer Associates, Sunderland
Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405(6783):212–219. doi:10.1038/35012221
Sanjit L, Bhatt D (2005) How relevant are the concepts of species diversity and species richness? J Biosci 30(5):557–560. doi:10.1007/BF02703552
Scherer-Lorenzen M (2005) Biodiversity and ecosystem functioning: basic principles. In: Barthlott W, Linsenmair KE, Porembski S (eds) Encyclopedia of life support systems, vol I. Eolss Publishers, Oxford
Soulé ME (1985) What is conservation biology. Bioscience 35(11):727–734
Soulé ME (ed) (1986) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Minnesota
Tilman D, Knops J, Wedin D, Reich PB (2002) Plant diversity and composition: effects on productivity and nutrient dynamics of experimental grasslands. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 21–35
Tsou JY, Richardson A, Padovani F (2015) Introduction: objectivity in science. In: Padovani F, Richardson A, Tsou JY (eds) Objectivity in science. Springer, New York, pp 1–15
Vandermeer J, Lawrence D, Symstad A, Hobbie S (2002) Effect of biodiversity on ecosystem functioning in managed ecosystems. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 221–233
Wang S, Loreau M (2014) Ecosystem stability in space: α, β and γ variability. Ecol Lett 17(8):891–901. doi:10.1111/ele.12292
Warming E (1895) Plantesamfund: grundtræk af den økologiske plantegeografi. P.G. Philipsens Forlag, Kjøbenhavn
Warming E (1909) Oecologie of plants. The University of Illinois Library, Illinois
Wilkinson DM (2002) Ecology before ecology: biogeography and ecology in Lyell’s Principles. J Biogeogr 29(9):1109–1115
Wright C (2009) Truth and objectivity. Harvard University Press, Cambridge
Acknowledgements
We thank Fapesb (Fundação de Amparo à Pesquisa do Estado da Bahia) for funding this research. We would like to thank Dr. Pedro Rocha, Dr. Suani Pinho, Dr. Gilson Correia de Carvalho, Dr. Mauro Ramalho (all from the Federal University of Bahia) and Dr. Sabrina Borges Lino Araújo (from the Federal University of Paraná), and the anonymous reviewers for their helpful comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eduardo, A.A., Carmo, R. An objective view of biological diversity: how history and epistemology shaped current treatment. Theory Biosci. 136, 113–122 (2017). https://doi.org/10.1007/s12064-017-0245-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12064-017-0245-2