Skip to main content
Log in

Memetic pareto differential evolutionary artificial neural networks to determine growth multi-classes in predictive microbiology

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

The main objective of this research is to automatically design Artificial Neural Network models with sigmoid basis units for multiclassification tasks in predictive microbiology. The classifiers obtained achieve a double objective: a high classification level in the dataset and high classification levels for each class. The Memetic Pareto Differential Evolution Neural Network chosen to learn the structure and weights of the Neural Networks is a Differential Evolutionary approach based on the Pareto Differential Evolution multiobjective evolutionary algorithm. The Pareto Differential Evolution algorithm is augmented with a local search using the improved Resilient Backpropagation with backtracking–iRprop + algorithm. To analyze the robustness of this methodology, it has been applied to two complex classification problems in predictive microbiology (Staphylococcus aureus and Shigella flexneri). The results obtained show that the generalization ability and the classification rate in each class can be more efficiently improved within this multiobjective algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbass HA (2001) A memetic pareto evolutionary approach to artificial neural networks. In: Brooks M, Corbet D, Stumptner M (eds) AI2001. LNAI 2256, Springer, pp 1–12

  2. Abbass HA, Sarker R, Newton C (2001) Pde: a pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 congress on evolutionary computation, vol 2. Seoul, South Korea

  3. Baranyi J, Roberts T (1995) Mathematics of predictive food microbiology. Int J Food Microbiol 26:199–218

    Article  Google Scholar 

  4. Baranyi J, Ross T, McMeekin TA, Roberts TA (1996) Effects of parameterization on the performance of empirical models used in predictive microbiology. Int J Food Microbiol 13:83–91

    Article  Google Scholar 

  5. Ben-David A (2007) A lot of randomness is hiding in accuracy. Eng Appl Artif Intell 20(7):875–885

    Article  Google Scholar 

  6. Bishop CM (1996) Neural networks for pattern recognition. Oxford University Press, Oxford

    MATH  Google Scholar 

  7. Buchanan RLB (1993) Expansion of response surface analysis for the growth of Escherichia coli O157:H7 to include sodium nitrite as a variable. Int J Food Microbiol 23:317–332

    Article  Google Scholar 

  8. Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, vol XXII, 2nd edn. Springer, Berlin

  9. Davey K (1991) Applicability of the Davey, (linear Arrhenius) predictive model to the lag phase of microbial growth. J Appl Bacteriol 70:253–257

    Google Scholar 

  10. Deb K, Pratab A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga2. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  11. Fernández JC, Hervás C, Martínez FJ, Gutiérrez PA, Cruz M (2009) Memetic pareto differential evolution for designing artificial neural networks in multiclassification problems using cross-entropy versus sensitivity. In: Hybrid artificial intelligence systems, vol 5572. Springer, Berlin, pp 433–441

  12. Fernández JC, Martínez FJ, Hervás C, Gutiérrez PA (2010) Sensitivity versus accuracy in multi-class problems using memetic pareto evolutionary neural networks. IEEE Trans Neural Netw 21(5):750–770

    Article  Google Scholar 

  13. Fernández-Navarro F, Valero A, Hervás-Martínez C, Gutiérrez PA, García-Gimeno RM, Zurera-Cosano G (2010) Development of a multi-classification neural network model to determine the microbial growth/no growth interface. Int J Food Microbiol 141:203–212

    Google Scholar 

  14. García D, Ramos AJ, Sanchis V, Marin S (2009) Predicting mycotoxins in foods: a review. Food Microbiol 26:757–769

    Article  Google Scholar 

  15. Garcia-Gimeno RM, Hervas-Martinez C, Barco-Alcala E, Zurera-Cosano G, Sanz-Tapia E (2003) An artificial neural network approach to Escherichia coli O157:H7 growth estimation. J Food Sci 68(2):639–645

    Article  Google Scholar 

  16. Garcia-Gimeno RM, Hervas-Martinez C, Rodriguez-Perez R, Zurera-Cosano G (2005) Modelling the growth of Leuconostoc mesenteroides by artificial neural networks. Int J Food Microbiol 105(3):317–332

    Article  Google Scholar 

  17. Garcia-Gimeno RM, Hervas-Martinez C, Sanz-Tapia E, Zurera-Cosano G (2002) Estimation of microbial growth parameters by means of artificial neural networks. Food Sci Technol Int 8(2):73–80

    Google Scholar 

  18. Garcia-Gimeno RM, Hervas-Martinez C, de Siloniz MI (2002) Improving artificial neural networks with a pruning methodology and genetic algorithms for their application in microbial growth prediction in food. Int J Food Microbiol 72(1–2):19–30

    Article  Google Scholar 

  19. Gelenbe E, Hussain KF (2002) Learning in the multiple class random neural network. IEEE Trans Neural Netw 13(6):1257–1267

    Article  Google Scholar 

  20. Hajmeer M, Basheer I (2002) A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data. J Microbiol Methods 51:217–226

    Article  Google Scholar 

  21. Hajmeer M, Basheer I, Najjar Y (1997) Computational neural networks for predictive microbiology: II. Application to microbe growth. Int J Food Microbiol 34:51–66

    Article  Google Scholar 

  22. Hajmeer MN, Basheer IA (2003) A hybrid bayesian-neural network approach for probabilistic modeling of bacterial growth/no-growth interface. Int J Food Microbiol 82:233–243

    Article  Google Scholar 

  23. Hajmeer MN, Basheer IA, Cliver DO (2006) Reliability-based estimation of the survival of listeria monocytogenes in chorizos. J Sci Food Agric 86(14):2337–2344

    Article  Google Scholar 

  24. Hervas C, Zurera G, Garcia RM, Martinez JA (2001) Optimization of computational neural network for its application in the prediction of microbial growth in foods. Food Sci Technol Int 7(2):159–163

    Article  Google Scholar 

  25. Hervas-Martinez C, Garcia-Gimeno RM, Martinez-Estudillo AC, Martinez-Estudillo FJ, Zurera-Cosano G (2006) Improving microbial growth prediction by product unit neural networks. J Food Sci 71(2):M31–M38

    Article  Google Scholar 

  26. Hudson J (1992) Construction of and comparison between response surface analysis for Aeromonas hydrophila ATCC 7966 and food isolate under aerobic conditions. J Food Prot 55:968–972

    Google Scholar 

  27. Igel C, Hüsken M (2000) Improving the rprop learning algorithm. In: Proceedings of the second international ICSC symposium on neural computation (NC 2000). ICSC Academic Press, pp 115–121

  28. Igel C, Hüsken M (2003) Empirical evaluation of the improved rprop learning algorithms. Neurocomputing 50(6):105–123

    Article  MATH  Google Scholar 

  29. Jin Y, Sendhoff B (2008) Pareto-based multiobjective machine learning: an overview and case studies. IEEE Trans Syst Man Cybern C Appl Rev 38(3):397–415

    Article  Google Scholar 

  30. Koutsoumanis K, Taoukis P, Nychas G (2005) Development of a safety mon itoring and assurance system for chilled food products. Int J Food Microbiol 100(1–3):253–260

    Article  Google Scholar 

  31. Le Marc Y, Pin C, Baranyi J (2002) Methods to determine the growth domain in a multidimensional environmental space. Int J Food Microbiol 100(1–3):312

    Google Scholar 

  32. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. U. C. Berkeley Press, pp 281–297

  33. Miller R (1996) Beyond ANOVA, basics of app. statistics. Chapman & Hall, London

    Google Scholar 

  34. Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In: Handbook of Metaheuristics. International series in operations research and management science, vol 57. Springer, New York, pp 105–144

  35. Natarajan BK (1991) Machine learning: a theoretical approach. Morgan Kaufmann, San Mateo. ISBN: 1558601481

  36. Pitt R (1992) A descriptive model of mold growth and aflatoxin formation as affected by environmental conditions. J Food Prot 56:139–146

    Google Scholar 

  37. Presser K, Ross T, Ratkowsky D (1998) Modelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration and water activity. Appl Environ Microbiol 64(5):1773–1779

    Google Scholar 

  38. Price D, Knerr S, Personnaz L, Dreyfus G (1995) Pairwise neural network classifiers with probabilistic outputs. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems 7 (NIPS Conference, Denver, Colorado, USA, 1994). MIT Press, Cambridge, pp 1109–1116

  39. Ratkowsky DA, Ross T (1995) Modeling the bacterial no growth interface. Lett Appl Microbiol 20:29–33

    Article  Google Scholar 

  40. Richard D, David ER (1989) Product units: a computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput 1(1):133–142

    Article  Google Scholar 

  41. Soriano JM, Font G, Moltó JC, manes J (2002) Enterotoxigenic staphylococci and their toxins in restaurant foods. Trends Food Sci Technol 13:60–67

    Article  Google Scholar 

  42. Storn R (2008) Differential evolution research—trends and open questions. In: Advances in differential evolution. Studies in computational intelligence, vol 143, pp 1–31. doi:10.1007/978-3-540-68830-3

  43. Valero A, Hervás C, García-Gimeno RM, Zurera G (2007) Product unit neural network models for predicting the growth limits of Listeria monocytogenes. Food Microbiol 24(5):452–464

    Article  Google Scholar 

  44. Valero A, Hervás C, García-Gimeno RM, Zurera G (2007) Searching for new mathematical growth model approaches for Listeria monocytogenes. J Food Sci 72(1):M16–M25

    Article  Google Scholar 

  45. Valero A, Pérez-Rodríguez F, Carrasco E, Fuentes-Alventosa JM, Garcfa-Gimeno RM, Zurera G (2009) Modelling the growth boundaries of Staphylococcus aureus: effect of temperature, pH and water activity. Int J Food Microbiol 133:186–194

    Article  Google Scholar 

  46. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  47. Yu C, Davidson VJ, Yang SX (2006) A neural network approach to predict survival/death and growth/no-growth interfaces for Escherichia coli O157:H7. Food Microbiol 23(6):552560

    Article  Google Scholar 

  48. Zaika LL, Moulden E, Weimer L, Phillips JG, Buchanan RL (1994) Model for the combined effects of temperature, initial pH, sodium chloride and sodium nitrite concentrations on anaerobic growth of Shigella flexneri. Int J Food Microbiol 23:345–358

    Article  Google Scholar 

  49. Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern C Appl Rev 30(4):451–462

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially subsidized by the TIN 2008-06681-C06-03 project of the Spanish Ministerial Commission of Science and Technology (MICYT), FEDER funds and the P08-TIC-3745 project of the “Junta de Andalucía” (Spain). Manuel Cruz-Ramírez and Francisco Fernndez-Navarro’s research have been funded by the “Junta de Andalucía” Predoctoral Program, grant reference P08-TIC-3745. Javier Sánchez-Monedero’s research has been funded by the “Junta de Andalucía” Ph. D. Student Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cruz-Ramírez.

Additional information

This paper is a very significant extension of a contribution appearing in the 23rd International Conference on Industrial and Engineering & Other Applications of Applied Intelligent Systems (IEA-AIE2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz-Ramírez, M., Sánchez-Monedero, J., Fernández-Navarro, F. et al. Memetic pareto differential evolutionary artificial neural networks to determine growth multi-classes in predictive microbiology. Evol. Intel. 3, 187–199 (2010). https://doi.org/10.1007/s12065-010-0045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-010-0045-9

Keywords

Navigation