Skip to main content
Log in

Anatomy of a portfolio optimizer under a limited budget constraint

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Predicting the market’s behavior to profit from trading stocks is far from trivial. Such a task becomes even harder when investors do not have large amounts of money available, and thus cannot influence this complex system in any way. Machine learning paradigms have been already applied to financial forecasting, but usually with no restrictions on the size of the investor’s budget. In this paper, we analyze an evolutionary portfolio optimizer for the management of limited budgets, dissecting each part of the framework, discussing in detail the issues and the motivations that led to the final choices. Expected returns are modeled resorting to artificial neural networks trained on past market data, and the portfolio composition is chosen by approximating the solution to a multi-objective constrained problem. An investment simulator is eventually used to measure the portfolio performance. The proposed approach is tested on real-world data from New York’s, Milan’s and Paris’ stock exchanges, exploiting data from June 2011 to May 2014 to train the framework, and data from June 2014 to July 2015 to validate it. Experimental results demonstrate that the presented tool is able to obtain a more than satisfying profit for the considered time frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Saturation of the neuron is a non linearity happens when the weights are too high in magnitude: on every input the result will be the saturation level and that means that the neuron losses memory and became useless.

  2. http://www.eni.com/.

  3. Milan stock exchange (Euro): A2A.MI, ATL.MI, AZM.MI, BMED.MI, BMPS.MI, BP.MI, BPE.MI, BZU.MI, CPR.MI, EGPW.MI, ENEL.MI, ENI.MI, EXO.MI, FCA.MI, FNC.MI, G.MI, ISP.MI, IT.MI, LUX.MI, MB.MI, MS.MI, PMI.MI, PRY.MI, SPM.MI, SRG.MI, STM.MI, TEN.MI, TIT.MI, TOD.MI, TRN.MI, UBI.MI, UCG.MI, US.MI, YNAP.MI.

  4. Paris Stock Exchange (Euro): AC.PA, ACA.PA, AI.PA, AIR.PA, BN.PA, BNP.PA, CA.PA, CAP.PA, CS.PA, DG.PA, EI.PA, EN.PA, ENGI.PA, FP.PA, GLE.PA, KER.PA, LI.PA, LR.PA, MC.PA, ML.PA, OR.PA, ORA.PA, PUB.PA, RI.PA, RNO.PA, SAF.PA, SAN.PA, SGO.PA, SU.PA, TEC.PA, UG.PA, VIE.PA, VIV.PA.

  5. Down Jones Avarage Industrial—New York Stock Exchange (US Dollar): AAPL, AXP, BA, CAT, CSCO, CVX, DD, DIS, GE, GS, HD, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT, NKE, PFE, PG, TRV, UNH, UTX, V, VZ, WMT, XOM.

  6. https://finance.yahoo.com/.

  7. http://www.bloomberg.com/markets/stocks.

References

  1. Abarbanell JS, Bushee BJ (1997) Fundamental analysis, future earnings, and stock prices. J Account Res 35(1):1–24

  2. Alexander C (2009) Market risk analysis, value at risk models, vol 4. Wiley, London

    Google Scholar 

  3. Anagnostopoulos K, Mamanis G (2010) A portfolio optimization model with three objectives and discrete variables. Comput Oper Res 37(7):1285–1297

    Article  MathSciNet  MATH  Google Scholar 

  4. Anagnostopoulos K, Mamanis G (2011) The mean–variance cardinality constrained portfolio optimization problem: an experimental evaluation of five multiobjective evolutionary algorithms. Expert Syst Appl 38(11):14208–14217

    Google Scholar 

  5. Association MF et al (2009) Sound practices for hedge fund managers. http://www.managedfunds.org

  6. Barberis N, Thaler R (2003) A survey of behavioral finance. Handb Econ Finance 1:1053–1128

    Article  Google Scholar 

  7. Beasley JE, Meade N, Chang TJ (2003) An evolutionary heuristic for the index tracking problem. Eur J Oper Res 148(3):621–643

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodie Z, Kane A, Marcus AJ (2014) Investments. McGraw-Hill, New York

    Google Scholar 

  9. Borgelt C, Kruse R (2002) Induction of association rules: apriori implementation. In: Compstat. Physica-Verlag, HD, pp 395–400

  10. Branke J, Scheckenbach B, Stein M, Deb K, Schmeck H (2009) Portfolio optimization with an envelope-based multi-objective evolutionary algorithm. Eur J Oper Res 199(3):684–693

    Article  MathSciNet  MATH  Google Scholar 

  11. Bulkowski TN (2011) Encyclopedia of chart patterns, vol 225. Wiley, London

    Google Scholar 

  12. Cao LJ, Tay FE (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans Neural Netw 14(6):1506–1518

    Article  Google Scholar 

  13. Chang TJ, Meade N, Beasley JE, Sharaiha YM (2000) Heuristics for cardinality constrained portfolio optimisation. Comput Oper Res 27(13):1271–1302

    Article  MATH  Google Scholar 

  14. Coello CAC, Lamont GB, Van Veldhuisen DA (2007) Evolutionary algorithms for solving multi-objective problems. Springer, Berlin

    MATH  Google Scholar 

  15. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  16. Deboeck G (1994) Trading on the edge: neural, genetic, and fuzzy systems for chaotic financial markets, vol 39. Wiley, London

    Google Scholar 

  17. Dechow PM, Hutton AP, Meulbroek L, Sloan RG (2001) Short-sellers, fundamental analysis, and stock returns. J Financ Econ 61(1):77–106

    Article  Google Scholar 

  18. Deplano I, Squillero G, Tonda A (2016) Portfolio optimization, a decision-support methodology for small budgets. In: Applications of evolutionary computation. Springer, pp 58–72

  19. Devadoss AV, Ligori TAA (2013) Forecasting of stock prices using multi layer perceptron. Int J Comput Algorithm 2:440–449

    Google Scholar 

  20. Edwards RD, Magee J, Bassetti W (2007) Technical analysis of stock trends. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  21. Fama EF (1970) Efficient capital markets: a review of theory and empirical work. J Finance 25(2):383–417

    Article  Google Scholar 

  22. Fama EF, French KR (2004) The capital asset pricing model: theory and evidence. J Econ Perspect 18:25–46

    Article  Google Scholar 

  23. Fu Tc, Chung Fl, Ng V, Luk R (2001) Pattern discovery from stock time series using self-organizing maps. In: Workshop notes of KDD2001 workshop on temporal data mining, Citeseer, pp 26–29

  24. Gabrielsson P, König R, Johansson U (2013) Evolving hierarchical temporal memory-based trading models. Springer, Berlin

    Book  Google Scholar 

  25. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. http://www.deeplearningbook.org. Book in preparation for MIT Press

  26. Graham B, Dodd DL (2008) Security analysis. McGraw-Hill, New York

    Google Scholar 

  27. Grossman S (1976) On the efficiency of competitive stock markets where trades have diverse information. J Finance 31(2):573–585

    Article  Google Scholar 

  28. Grossman SJ, Stiglitz JE (1980) On the impossibility of informationally efficient markets. Am Econ Rev 70(3):393–408

    Google Scholar 

  29. Haykin S, Lippmann R (1994) Neural networks, a comprehensive foundation. Int J Neural Syst 5(4):363–364

    Article  MATH  Google Scholar 

  30. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034

  31. Hochreiter R (2010) Evolutionary multi-stage financial scenario tree generation. In: Applications of evolutionary computation. Springer, pp 182–191

  32. Høyland K, Wallace SW (2001) Generating scenario trees for multistage decision problems. Manag Sci 47(2):295–307

    Article  MATH  Google Scholar 

  33. Ineichen A, Silberstein K (2008) Aimas roadmap to hedge funds. Alternative Investment Management Association, London

    Google Scholar 

  34. Ineichen AM (2002) Absolute returns: the risk and opportunities of hedge fund investing, vol 195. Wiley, London

    Google Scholar 

  35. Jiang ZQ, Zhou WX, Sornette D, Woodard R, Bastiaensen K, Cauwels P (2010) Bubble diagnosis and prediction of the 2005–2007 and 2008–2009 Chinese stock market bubbles. J Econ Behav Organ 74(3):149–162

    Article  Google Scholar 

  36. Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econom J Econom Soc 47(2):263–291

  37. Kim D, Kim C (1997) Forecasting time series with genetic fuzzy predictor ensemble. IEEE Trans Fuzzy Syst 5(4):523–535

    Article  Google Scholar 

  38. Kimoto T, Asakawa K, Yoda M, Takeoka M (1990) Stock market prediction system with modular neural networks. In: 1990 IJCNN international joint conference on neural networks, 1990. IEEE, pp 1–6

  39. Koller T, Goedhart M, Wessels D (2015) Valuation: measuring and managing the value of companies, 6th edn. Wiley, London

    Google Scholar 

  40. Laboissiere LA, Fernandes RA, Lage GG (2015) Maximum and minimum stock price forecasting of Brazilian power distribution companies based on artificial neural networks. Appl Soft Comput 35:66–74

    Article  Google Scholar 

  41. Lo AW (2004) The adaptive markets hypothesis: market efficiency from an evolutionary perspective. J Portf Manag. http://ssrn.com/abstract=602222. Accessed 28 Aug 2016

  42. Loginov A, Heywood MI (2013) On the utility of trading criteria based retraining in forex markets. Springer, Berlin

    Book  Google Scholar 

  43. Lohpetch D, Corne D (2010) Outperforming buy-and-hold with evolved technical trading rules: daily, weekly and monthly trading. In: Applications of evolutionary computation. Springer, pp 171–181

  44. Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91

    Google Scholar 

  45. Markowitz HM (1968) Portfolio selection: efficient diversification of investments, vol 16. Yale university press, New Haven

    Google Scholar 

  46. Matz L, Neu P (2006) Liquidity risk measurement and management: a practitioner’s guide to global best practices, 408th edn. Wiley, London

    Book  Google Scholar 

  47. Merton RC (1973) An intertemporal capital asset pricing model. Econom J Econom Soc 41(5):867–887

  48. Michalak K (2015) Selecting best investment opportunities from stock portfolios optimized by a multiobjective evolutionary algorithm. In: Proceedings of the 2015 on genetic and evolutionary computation conference. ACM, pp 1239–1246

  49. Michalak K, Filipiak P, Lipinski P (2013) Usage patterns of trading rules in stock market trading strategies optimized with evolutionary methods. Springer, Berlin

    Book  Google Scholar 

  50. Neri F (2011) Learning and predicting financial time series by combining natural computation and agent simulation. In: Applications of evolutionary computation. Springer, pp 111–119

  51. Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks by choosing. In: Initial values of the adaptive weights, international joint conference of neural networks, pp 21–26

  52. Oberlechner T (2001) Importance of technical and fundamental analysis in the European foreign exchange market. Int J Finance Econ 6(1):81–93

    Article  Google Scholar 

  53. Otero FE, Kampouridis M (2014) A comparative study on the use of classification algorithms in financial forecasting. In: Applications of evolutionary computation. Springer, pp 276–287

  54. Pascanu R, Gulcehre C, Cho K, Bengio Y (2013) How to construct deep recurrent neural networks. arXiv preprint arXiv:13126026

  55. Rather AM, Agarwal A, Sastry V (2015) Recurrent neural network and a hybrid model for prediction of stock returns. Expert Syst Appl 42(6):3234–3241

    Article  Google Scholar 

  56. Ross SA (1976) The arbitrage theory of capital asset pricing. J Econ Theory 13(3):341–360

    Article  MathSciNet  Google Scholar 

  57. Shefrin H, Statman M (2000) Behavioral portfolio theory. J Financ Quant Anal 35(02):127–151

    Article  Google Scholar 

  58. Sheppard K (2010) Financial econometrics notes. University of Oxford, Oxford

    Google Scholar 

  59. Shiller RJ (1999) Human behavior and the efficiency of the financial system. Handb Macroecon 1:1305–1340

    Article  Google Scholar 

  60. Shiller RJ (2003) From efficient markets theory to behavioral finance. J Econ Perspect 17(1):83–104

    Article  Google Scholar 

  61. Simon HA (1955) A behavioral model of rational choice. Q J Econ 69(1):99–118

  62. Simon HA (1982) Models of bounded rationality: empirically grounded economic reason, 3rd edn. MIT Press, Cambridge

    Google Scholar 

  63. Srikant R, Vu Q, Agrawal R (1997) Mining association rules with item constraints. KDD 97:67–73

    Google Scholar 

  64. Swisher P, Kasten GW (2005) Post-modern portfolio theory. J Financ Plann Denver 18(9):74

    Google Scholar 

  65. Tapia MGC, Coello CAC (2007) Applications of multi-objective evolutionary algorithms in economics and finance: a survey. In: IEEE congress on evolutionary computation, vol 7, pp 532–539

  66. Trippi RR, Turban E (1992) Neural networks in finance and investing: using artificial intelligence to improve real world performance. McGraw-Hill, New York

    Google Scholar 

  67. Tversky A, Kahneman D (1992) Advances in prospect theory: cumulative representation of uncertainty. J Risk Uncertain 5(4):297–323

    Article  MATH  Google Scholar 

  68. Vassiliadis V, Thomaidis N, Dounias G (2011) On the performance and convergence properties of hybrid intelligent schemes: application on portfolio optimization domain. In: Applications of evolutionary computation. Springer, pp 131–140

  69. Ye Y, Chiang CC (2006) A parallel apriori algorithm for frequent itemsets mining. In: Fourth international conference on software engineering research, management and applications, 2006. IEEE, pp 87–94

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Deplano.

Additional information

The names of authors are listed in alphabetical order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deplano, I., Squillero, G. & Tonda, A. Anatomy of a portfolio optimizer under a limited budget constraint. Evol. Intel. 9, 125–136 (2016). https://doi.org/10.1007/s12065-016-0144-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-016-0144-3

Keywords

Navigation