Skip to main content

Advertisement

Log in

Multilevel image thresholding using entropy of histogram and recently developed population-based metaheuristic algorithms

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Multilevel thresholding is one of the most broadly used approaches to image segmentation. However, the traditional techniques of multilevel thresholding are time-consuming, especially when the number of the threshold values is high. Thus, population-based metaheuristic (P-metaheuristic) algorithms can be used to overcome this limitation. P-metaheuristic algorithms are a type of optimization algorithms, which improve a set of solutions using an iterative process. For this purpose, image thresholding problem should be seen as an optimization problem. This paper proposes multilevel image thresholding for image segmentation using several recently presented P-metaheuristic algorithms, including whale optimization algorithm, grey wolf optimizer, cuckoo optimization algorithm, biogeography-based optimization, teaching–learning-based optimization, gravitational search algorithm, imperialist competitive algorithm, and cuckoo search. Kapur’s entropy is used as the objective function. To conduct a more comprehensive comparison, the mentioned P-metaheuristic algorithms were compared with five others. Several experiments were conducted on 12 benchmark images to compare the algorithms regarding objective function value, peak signal to noise ratio (PSNR), feature similarity index (FSIM), structural similarity index (SSIM), and stability. In addition, Friedman test and Wilcoxon signed rank test were carried out as the nonparametric statistical methods to compare P-metaheuristic algorithms. Eventually, to create a more reliable result, another objective function was evaluated based on Cross Entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sanei SHR, Fertig RS (2015) Uncorrelated volume element for stochastic modeling of microstructures based on local fiber volume fraction variation. Compos Sci Technol 117:191–198

    Article  Google Scholar 

  2. Smistad E, Falch TL, Bozorgi M, Elster AC, Lindseth F (2015) Medical image segmentation on GPUs—a comprehensive review. Med Image Anal 20(1):1–18

    Article  Google Scholar 

  3. Mizushima A, Lu R (2013) An image segmentation method for apple sorting and grading using support vector machine and Otsu’s method. Comput Electr Agric 94:29–37

    Article  Google Scholar 

  4. Sanei SHR, Barsotti EJ, Leonhardt D, Fertig RS III (2016) Characterization, synthetic generation, and statistical equivalence of composite microstructures. J Compos Mater. doi:10.1177/0021998316662133

    Google Scholar 

  5. Gong M, Liang Y, Shi J, Ma W, Ma J (2013) Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans Image Process 22(2):573–584

    Article  MathSciNet  Google Scholar 

  6. Mohamed NA, Ahmed MN, Farag (1999) A modified fuzzy c-mean in medical image segmentation. In: IEEE international conference on acoustics, speech, and signal processing, IEEE, pp 3429–3432

  7. Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit 40(3):825–838

    Article  MATH  Google Scholar 

  8. Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224

    Article  Google Scholar 

  9. Vicente S, Kolmogorov V, Rother C (2008) Graph cut based image segmentation with connectivity priors. In: IEEE conference on computer vision and pattern recognition, IEEE, pp 1–8

  10. Gao H, Xu W, Sun J, Tang Y (2010) Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE Trans Instrum Meas 59(4):934–946

    Article  Google Scholar 

  11. Mousavi rad SJ, Akhlaghian Tab F, Mollazade K (2011) Classification of rice varieties using optimal color and texture features and BP neural networks. In: 7th Iranian conference on machine vision and image processing, IEEE, pp 1–5

  12. Bhandari A, Kumar A, Singh G (2015) Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Syst Appl 42(22):8707–8730

    Article  Google Scholar 

  13. White JM, Rohrer GD (1983) Image thresholding for optical character recognition and other applications requiring character image extraction. IBM J Res Dev 27(4):400–411

    Article  Google Scholar 

  14. Kayal D, Banerjee S (2014) A new dynamic thresholding based technique for detection of hard exudates in digital retinal fundus image. In: International conference on signal processing and integrated networks, IEEE, pp 141–144

  15. Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recognit 19(1):41–47

    Article  Google Scholar 

  16. Wang S, Chung F-l, Xiong F (2008) A novel image thresholding method based on Parzen window estimate. Pattern Recognit 41(1):117–129

    Article  MATH  Google Scholar 

  17. Dirami A, Hammouche K, Diaf M, Siarry P (2013) Fast multilevel thresholding for image segmentation through a multiphase level set method. Signal Process 93 (1):139–153

    Article  Google Scholar 

  18. Rajinikanth V, Aashiha J, Atchaya A (2014) Gray-level histogram based multilevel threshold selection with bat algorithm. Int J Comput Appl 93(16):1–8

  19. Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst Appl 42(3):1573–1601

    Article  Google Scholar 

  20. Pun T (1980) A new method for grey-level picture thresholding using the entropy of the histogram. Signal Process 2(3):223–237

    Article  Google Scholar 

  21. Kapur JN, Sahoo PK, Wong AK (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29(3):273–285

    Article  Google Scholar 

  22. Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 13(6):3066–3091

    Article  Google Scholar 

  23. Bhandari AK, Singh VK, Kumar A, Singh GK (2014) Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst Appl 41(7):3538–3560

    Article  Google Scholar 

  24. Sezgin M (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electr Imaging 13(1):146–168

    Article  Google Scholar 

  25. Yin P-Y (1999) A fast scheme for optimal thresholding using genetic algorithms. Signal Process 72(2):85–95

    Article  MathSciNet  MATH  Google Scholar 

  26. Tao W-B, Tian J-W, Liu J (2003) Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recognit Lett 24(16):3069–3078

    Article  Google Scholar 

  27. Maitra M, Chatterjee A (2008) A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding. Expert Syst Appl 34(2):1341–1350

    Article  Google Scholar 

  28. Chander A, Chatterjee A, Siarry P (2011) A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Syst Appl 38(5):4998–5004

    Article  Google Scholar 

  29. Liu Y, Mu C, Kou W, Liu J (2015) Modified particle swarm optimization-based multilevel thresholding for image segmentation. Soft Comput 19(5):1311–1327

    Article  Google Scholar 

  30. Mlakar U, Potočnik B, Brest J (2016) A Hybrid differential evolution for optimal multilevel image thresholding. Expert Syst Appl 65:221–232

    Article  Google Scholar 

  31. Ayala HVH, dos Santos FM, Mariani VC, dos Santos Coelho L (2015) Image thresholding segmentation based on a novel beta differential evolution approach. Expert Syst Appl 42(4):2136–2142

    Article  Google Scholar 

  32. Sarkar S, Das S (2013) Multilevel image thresholding based on 2D histogram and maximum Tsallis entropy—a differential evolution approach. IEEE Trans Image Process 22(12):4788–4797

    Article  MathSciNet  Google Scholar 

  33. Sathya P, Kayalvizhi R (2011) Modified bacterial foraging algorithm based multilevel thresholding for image segmentation. Eng Appl Artif Intell 24(4):595–615

    Article  Google Scholar 

  34. Alihodzic A, Tuba M (2014) Improved bat algorithm applied to multilevel image thresholding. Sci World J 2014:1–16

  35. Horng M-H (2011) Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Syst Appl 38(11):13785–13791

    Google Scholar 

  36. Sağ T, Çunkaş M (2015) Color image segmentation based on multiobjective artificial bee colony optimization. Appl Soft Comput 34:389–401

    Article  Google Scholar 

  37. Cuevas E, Sención F, Zaldivar D, Pérez-Cisneros M, Sossa H (2012) A multi-threshold segmentation approach based on artificial bee colony optimization. Appl Intell 37(3):321–336

    Article  Google Scholar 

  38. Horng M-H (2010) A multilevel image thresholding using the honey bee mating optimization. Appl Math Comput 215(9):3302–3310

    MathSciNet  MATH  Google Scholar 

  39. Oliva D, Cuevas E, Pajares G, Zaldivar D, Osuna V (2014) A multilevel thresholding algorithm using electromagnetism optimization. Neurocomputing 139:357–381

    Article  Google Scholar 

  40. Raja N, Rajinikanth V, Latha K (2014) Otsu based optimal multilevel image thresholding using firefly algorithm. Model Simul Eng

  41. Fan C, Ouyang H, Zhang Y, Xiao L (2014) Optimal multilevel thresholding using molecular kinetic theory optimization algorithm. Appl Math Comput 239:391–408

    MathSciNet  MATH  Google Scholar 

  42. Hammouche K, Diaf M, Siarry P (2010) A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Eng Appl Artif Intell 23(5):676–688

    Article  Google Scholar 

  43. Cuevas E, Sossa H (2013) A comparison of nature inspired algorithms for multi-threshold image segmentation. Expert Syst Appl 40(4):1213–1219

    Article  Google Scholar 

  44. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  45. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  46. Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11(8):5508–5518

    Article  Google Scholar 

  47. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  48. Rao RV, Savsani VJ, Vakharia D (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  49. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  50. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE Congress on evolutionary computation, IEEE, pp 4661–4667

  51. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing, IEEE, pp 210–214

  52. Precup R-E, David R-C, Petriu EM, Szedlak-Stinean A-I, Bojan-Dragos C-A (2016) Grey wolf optimizer-based approach to the tuning of pi-fuzzy controllers with a reduced process parametric sensitivity. IFAC Papers Online 49(5):55–60

    Article  Google Scholar 

  53. Mirjalili S, Saremi S, Mirjalili SM, Coelho LdS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

    Article  Google Scholar 

  54. Medjahed S, Saadi TA, Benyettou A, Ouali M (2016) Gray wolf optimizer for hyperspectral band selection. Appl Soft Comput 40:178–186

    Article  Google Scholar 

  55. Sharma R, Rana K, Kumar V (2014) Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst Appl 41(9):4274–4289

    Article  Google Scholar 

  56. Azizipanah-Abarghooee R, Niknam T, Zare M, Gharibzadeh M (2014) Multi-objective short-term scheduling of thermoelectric power systems using a novel multiobjective θ-improved cuckoo optimisation algorithm. IET Gener Transm Distrib 8(5):873–894

    Article  Google Scholar 

  57. Mehdinejad M, Mohammadi-Ivatloo B, Dadashzadeh-Bonab R (2016) Energy production cost minimization in a combined heat and power generation systems using cuckoo optimization algorithm. Energy Effic 10:1–16

  58. Farshchin M, Camp C, Maniat M (2016) Multi-class teaching–learning-based optimization for truss design with frequency constraints. Eng Struct 106:355–369

    Article  Google Scholar 

  59. Sahu RK, Panda S, Rout UK, Sahoo DK (2016) Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller. Int J Electr Power Energy Syst 77:287–301

    Article  Google Scholar 

  60. Shuaib YM, Kalavathi MS, Rajan CCA (2015) Optimal capacitor placement in radial distribution system using gravitational search algorithm. Int J Electr Power Energy Syst 64:384–397

    Article  Google Scholar 

  61. Gouthamkumar N, Sharma V, Naresh R (2015) Disruption based gravitational search algorithm for short term hydrothermal scheduling. Expert Syst Appl 42(20):7000–7011

    Article  Google Scholar 

  62. Beigvand SD, Abdi H, La Scala M (2016) Optimal operation of multicarrier energy systems using time varying acceleration coefficient gravitational search algorithm. Energy 114:253–265

    Article  Google Scholar 

  63. Fowlkes C, Martin D, Malik J (2012) The berkeley segmentation dataset and benchmark (bsdb). http://www.cs.berkeley.edu/projects/vision/grouping/segbench. Accessed 11 June 2017

  64. Simon D (2008) Biogeography-based optimization. Evol Comput IEEE Trans 12(6):702–713

    Article  Google Scholar 

  65. Hosseini S, Al Khaled A (2014) A survey on the imperialist competitive algorithm metaheuristic: implementation in engineering domain and directions for future research. Appl Soft Comput 24:1078–1094

    Article  Google Scholar 

  66. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

  67. Yang X-S (2010) Firefly algorithm, Levy flights and global optimization. In: Research and development in intelligent systems XXVI. Springer, pp 209–218

  68. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report 2005005:2005

    Google Scholar 

  69. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  Google Scholar 

  71. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  72. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to University of Kashan for supporting this work under grant No. 572086.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Jalaleddin Mousavirad or Hossein Ebrahimpour-Komleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavirad, S.J., Ebrahimpour-Komleh, H. Multilevel image thresholding using entropy of histogram and recently developed population-based metaheuristic algorithms. Evol. Intel. 10, 45–75 (2017). https://doi.org/10.1007/s12065-017-0152-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-017-0152-y

Keywords

Navigation