Abstract
Swarm intelligence is a kind of artificial intelligence that is based on the collective behavior of the decentralized and self-organized systems. This work focuses on reviewing a heuristic global optimization method called particle swarm optimization (PSO). This includes the mathematical representation of PSO in contentious and binary spaces, the evolution and modifications of PSO over the last two decades. We also present a comprehensive taxonomy of heuristic-based optimization algorithms such as genetic algorithms, tabu search, simulated annealing, cross entropy and illustrate the advantages and disadvantages of these algorithms. Furthermore, we present the application of PSO on graphics processing unit and show various applications of PSO in networks.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2):243–278
Virágh C, Vásárhelyi G, Tarcai N, Szörényi T, Somorjai G, Nepusz T, Vicsek T (2014) Flocking algorithm for autonomous flying robots. Bioinspir Biomim 9(2):025012
Zhang Y, Agarwal P, Bhatnagar V, Balochian S, Yan J (2013) Swarm intelligence and its applications. Sci World J. https://doi.org/10.1155/2013/528069
Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single objective continuous space problems: a review. Evol Comput 25(1):1–54. https://doi.org/10.1162/EVCO_r_00180
Garro BA, Vázquez RA (2015) Designing artificial neural networks using particle swarm optimization algorithms. Comput Intell Neurosci 2015:61
Chen X, Li Y (2006) Neural network training using stochastic PSO. In: International conference on neural information processing. Springer, pp 1051–1060
Borni A, Abdelkrim T, Zaghba L, Bouchakour A, Lakhdari A, Zarour L (2017) Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system. In: AIP conference proceedings, vol 1814, AIP Publishing, p 020006
Bachache NK, Wen J (2013) Design fuzzy logic controller by particle swarm optimization for wind turbine. In: Ying T, Yuhui S, Hongwei M (eds) Advances in swarm intelligence. Springer, Berlin, pp 152–159
Engelbrecht AP (2013) Particle swarm optimization: global best or local best? In: Proceedings of the 2013 BRICS congress on computational intelligence and 11th Brazilian congress on computational intelligence, IEEE computer society, pp 124–135
Poli R (2008) Analysis of the publications on the applications of particle swarm optimisation. J Artif Evol Appl. https://doi.org/10.1155/2008/685175
Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6(4):467–484
Elbes M, Al-Fuqaha A, Rayes A (2012) Gyroscope drift correction based on TDoA technology in support of pedestrian dead reckoning. In: Globecom workshops (GC Wkshps), 2012 IEEE, pp 314–319
Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124
AlFuqaha A, Elbes M, Rayes A (2013) An intelligent data fusion technique based on the particle filter to perform precise outdoor localization. Int J Pervasive Comput Commun 9(2):163–183. https://doi.org/10.1108/IJPCC-02-2013-0001
Al-Fuqaha A, Kountanis D, Cooke S, Elbes M, Zhang J (2010) A genetic approach for trajectory planning in non-autonomous mobile ad-hoc networks with QOS requirements. In: GLOBECOM workshops (GC Wkshps), 2010 IEEE, pp 1097–1102
Temür R, Sait TY, Toklu YC (2015) Geometrically nonlinear analysis of trusses using particle swarm optimization. Recent advances in swarm intelligence and evolutionary computation. Springer, Berlin, pp 283–300
Elbes M, Al-Fuqaha A (2013) Design of a social collaboration and precise localization services for the blind and visually impaired. Proced Comput Sci 21:282–291
Li Y, Zhan Z-H, Lin S, Zhang J, Luo X (2015) Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems. Inf Sci 293:370–382
Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng. https://doi.org/10.1155/2015/931256
Pi Q ,Ye H (2015) Survey of particle swarm optimization algorithm and its applications in antenna circuit. In: 2015 IEEE international conference on communication problem-solving (ICCP), pp 492–495
Yang B, Chen Y, Zhao Z (2007) Survey on applications of particle swarm optimization in electric power systems. In: 2007 IEEE international conference on control and automation, pp 481–486
Keisuke K (2009) Particle swarm optimization—a survey. IEICE Trans Inf Syst 92(7):1354–1361
Vrahatis M, Parsopoulos K (2002) Particle swarm optimization method for constrained optimization problems. Front Artif Intell Appl 76:215–20
Carlos E, Alexander M, Roberto S, Lozano Jose A (2013) On the taxonomy of optimization problems under estimation of distribution algorithms. Evolut Comput 21(3):471–495
Jacobson L, Kanber B (2015) Genetic algorithms in Java basics. Springer, Berlin
Moorkamp M (2005) Genetic algorithms: a step by step tutorial. Dublin Institute for Advanced Studies, Barcelona
Parker PB (1999) Genetic algorithms and their use in geophysical problems. Technical report, Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Wang Y (2018) Improved OTSU and adaptive genetic algorithm for infrared image segmentation. In: 2018 Chinese control and decision conference (CCDC), IEEE, 2018
Pham D, Karaboga D (2012) Intelligent optimisation techniques: genetic algorithms, tabu search, simulated annealing and neural networks. Springer Science & Business Media, New York
Ke Q, Jiang T, De MS (1997) A tabu search method for geometric primitive extraction 1. Pattern Recognit Lett 18(14):1443–1451
Lamont G, Coello C, Van Veldhuizen D (2002) Evolutionary algorithms for solving multi-objective problems. Springer, New York
Siarry P, Berthiau G (1997) Fitting of tabu search to optimize functions of continuous variables. Int J Numer Methods Eng 40(13):2449–2457
Kirkpatrick S, Gelatt C, Vecchi MP (1993) Optimization by simulated annealing. Science 220:671
Koziel S, Rojas AL, Moskwa S (2018) Power loss reduction through distribution network reconfiguration using feasibility-preserving simulated annealing. In: 2018 19th International scientific conference on electric power engineering (EPE). IEEE
Breno de ARA, Niraldo RF (2018) Simulated annealing and tabu search applied on network reconfiguration in distribution systems. In: 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE). IEEE, 2018
Ma R, Wang Y, Hu W, Zhu X, Zhang K (2018) Optimum design of multistage half-band fir filter for audio conversion using a simulated annealing algorithm. In: 2018 13th IEEE conference on industrial electronics and applications (ICIEA). IEEE
Geem Z, Hwangbo H (2006) Application of harmony search to multi-objective optimization for satellite heat pipe design. Master’s thesis
Woo GZ, Hoon KJ, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68
Lee K, Geem Z (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194:3902–3933
Mahdavi M, Fesangharyb M, Damangirb E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579
Heegaard P, Wittner O, Helvik B, Nicola V (2004) Distributed asynchronous algorithm for cross-entropy-based combinatorial optimization. Rare event simulation and combinatorial optimization (RESIM/COP), Budapest, Hungary, 2004
Schug A, Herges T, Wenzel W (2003) Reproducible protein folding with the stochastic tunneling method. Phys Rev Lett 91(15):2–10
Mayer BE, Hamacher K (2014) Stochastic tunneling transformation during selection in genetic algorithm. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation, GECCO ’14, New York, NY, USA, 2014, ACM, pp 801–806
Hamacher K (2013) A new hybrid metaheuristic—combining stochastic tunneling and energy landscape paving. In: María JB, Christian B, Paola F, Andrea R, Michael S (eds) Hybrid metaheuristics. Springer, Berlin, pp 107–117
Wenzel W, Hamacher K (1999) Stochastic tunneling approach for global minimization of complex potential energy landscapes. Phys Rev Lett 82(15):3003
De Boer P, Kroese P, Mannor S, Rubinstein R (2004) A tutorial on the cross-entropy method. Ann Oper Res 134(1):254–5330
Rubinstein RY, Kroese DP (2004) The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer, New York. https://doi.org/10.1007/978-1-4757-4321-0 (ISBN: 978-1-4757-4321-0)
Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE international conference on systems, man, and cybernetics. Computational cybernetics and simulation, vol 5, pp 4104–4108
Heppner F, Grenander U (1990) A stochastic nonlinear model for coordinate bird flocks. Ubiquity Chaos 233:238
Hu X, Eberhart RC (2006) Solving constrained nonlinear optimization problems with particle swarm optimization. In: Cybernetics and intelligent systems IEEE conference
Lee K, Park J (2006) Application of particle swarm optimization to economic dispatch problem: advantages and disadvantages? In: IEEE PSCE
Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: SIS 2007. IEEE swarm intelligence symposium, 2007, April
Zhang L, Hu S, Yu H (2003) A new approach to improve particle swarm optimization, volume 2723/2003. Genet Evolut Comput. ISBN 978-3-540-40602-0
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proc. IEEE Int’l, pp 1942–1948, vol 4 conference on neural networks
del Valle Y, Digman M, Gray A, Perkel J, Venayagamoorthy GK, Harley RG (2008) Enhanced particle swarm optimizer for power system applications. In: 2008 IEEE swarm intelligence symposium, pp 1–7
Fan HY (2002) A modification to particle swarm optimization algorithm? Eng Comput 19(7–8):970–989
Witt C, Sudholt D (2008) Runtime analysis of binary PSO. In: Proceedings of the 10th annual conference on genetic and evolutionary computation, Atlanta, GA, USA, pp 135–142
Khanesar MA, Teshnehlab M, Shoorehdeli MA (2007) A novel binary particle swarm optimization. In: 2007 Mediterranean conference on control automation, pp 1–6, June
Gao F, Gui G, Zhao Q (2006) Application of improved discrete particle swarm algorithm in partner selection of virtual enterprise. IJCSNS Int J Comput Sci Netw Secur 6:208–212
Hereford J, Gerlach H (2008) Integer-valued particle swarm optimization applied to Sudoku puzzles. SIS IEEE intelligence symposium, 2008
Shi WM, Shen Q, Ye BX, Kong W (2007) A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification? Talanta 71:1679–1683
Yu H, Gu G, Liu H, Shen J, Zhu C (2008) A novel discrete particle swarm optimization algorithm for microarray data-based tumor marker gene selection. In: 2008 International conference on computer science and software engineering, vol 1, pp 1057–1060
Droste S, Jansen T, Wegener I (2002) On the analysis of the (1+1) evolutionary algorithm? Theor Comput Sci 276:51
Hoeffding W (1994) Probability inequalities for sums of bounded random variables. Springer, New York, pp 409–426
Doerr B, Neumann F, Sudholt D, Witt C (2007) On the runtime analysis of the 1-ANT ACO algorithm. In: Proc. of GECCO 07, ACM, pp 33–40
Nvidia Corp Website (2012) NVIDIA CUDA C Programming Guide, version 4.2. https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
Kaur J, Singh S, Singh S (2016) Parallel implementation of PSO algorithm using GPGPU. In: Computational intelligence and communication technology (CICT), 2016 second international conference on IEEE, pp 155–159
Zhou Y, Tan Y (2009) GPU-based parallel particle swarm optimization. In: Evolutionary computation, 2009. CEC’09. IEEE Congress on IEEE, pp 1493–1500
Hung Y, Wang W (2012) Accelerating parallel particle swarm optimization via GPU. Optim Methods Softw 27(1):33–51
Wu Q, Xiong F, Wang F, Xiong Y (2016) Parallel particle swarm optimization on a graphics processing unit with application to trajectory optimization. Eng Optim 48(10):1679–1692
Nobile MS, Besozzi D, Cazzaniga P, Mauri G, Pescini D (2012) A GPU-based multi-swarm PSO method for parameter estimation in stochastic biological systems exploiting discrete-time target series. In: Mario G, Leonardo V, William SB (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 74–85
Kintsakis AM, Chrysopoulos A, Mitkas PA (2015) Agent-based short-term load and price forecasting using a parallel implementation of an adaptive PSO-trained local linear wavelet neural network. In: European Energy Market (EEM), 2015 12th international conference on the IEEE, pp 1–5
Ouyang A, Zhuo Tang X, Zhou YX, Pan G, Li K (2015) Parallel hybrid PSO with cuda for lD heat conduction equation. Comput Fluids 110:198–210
Tan Y (2016) GPU-based parallel implementation of swarm intelligence algorithms. Morgan Kaufmann, Burlington
Maruf HM, Hattori H, Fujimoto N (2016) A CUDA implementation of the standard particle swarm optimization. In: Symbolic and numeric algorithms for scientific computing (SYNASC), 2016 18th international symposium on IEEE, pp 219–226
Atashpendar A, Dorronsoro B, Danoy G, Bouvry P (2018) A scalable parallel cooperative coevolutionary PSO algorithm for multi-objective optimization. J Parallel Distrib Comput 112:111–125
Jararweh Y, Alzubi S, Hariri S (2011) An optimal multi-processor allocation algorithm for high performance GPU accelerators. In: 2011 IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT), pp 1–6, Dec 2011
AlZubi S, Jararweh Y, Shatnawi R (2012) Medical volume segmentation using 3D multiresolution analysis. In: 2012 International conference on innovations in information technology (IIT)
AlZu’bi S, Shehab MA, Al-Ayyoub M, Benkhelifa E, Jararweh Y (2016) Parallel implementation of FCM-based volume segmentation of 3D images. In: 2016 IEEE/ACS 13th international conference of computer systems and applications (AICCSA), pp 1–6
Kothari V, Anuradha J, Shah S, Mittal P (2012) A survey on particle swarm optimization in feature selection. In: Krishna PV, Babu MR, Ezendu A (eds) Global trends in information systems and software applications. Springer, Berlin, pp 192–201
Souad LM-S (2015) A survey of particle swarm optimization techniques for solving university examination timetabling problem. Artif Intell Rev 44(4):537–546
Sun S, Abraham A, Zhang G, Liu H (2007) A particle swarm optimization algorithm for neighbor selection in peer-to-peer networks. In: Computer information systems and industrial management applications, 2007. CISIM ’07. 6th International conference on June, pp 166–172
Koo Simon GM, Karthik K, George LCS (2006) On neighbor-selection strategy in hybrid peer-to-peer networks. Fut Gener Comput Syst 22(7):732–741
Papagianni C, Papadopoulos K, Pampas C, Tselikas ND, Kaklamani DT, Venieris IS (2008) Communication network design using particle swarm optimization. In: 2008 international multiconference on computer science and information technology, pp 915–920
Pióro M, Medhi D (2004) Routing, flow, and capacity design in communication and computer networks. Elsevier, Amsterdam
Mauricio GCR, Panos MP (2006) Handbook of optimization in telecommunications. Springer, New York
Mohemmed AW, Sahoo NC (2007) Efficient computation of shortest paths in networks using particle swarm optimization and noising metaheuristics. Discrete Dyn Nat Soc. https://doi.org/10.1155/2007/27383
Ali MKM, Kamoun F (1993) Neural networks for shortest path computation and routing in computer networks. IEEE Trans Neural Netw 4(6):941–954
Kuri J, Puech N, Gagnaire M, Dotaro E (2002) Routing foreseeable lightpath demands using a tabu search meta-heuristic. In: Global telecommunications conference, 2002. GLOBECOM ’02. IEEE, vol 3, pp 2803–2807
Wook AC, Ramakrishna RS (2002) A genetic algorithm for shortest path routing problem and the sizing of populations. IEEE Trans Evolut Comput 6(6):566–579
Charon I, Hudry O (1993) The noising method: a new method for combinatorial optimization. Oper Res Lett 14(3):133–137
Shahin G, Falah A, Elias S (2008) Trained particle swarm optimization for ad-hoc collaborative computing networks. In: AISB 2008 convention, symposium on swarm intelligence algorithms and applications. Aberdeen, UK
Alfawaer Z, Hua G, Abdullah M, Mamady I (2007) Power minimization algorithm in wireless ad-hoc networks based on PSO. J Appl Sci 7(17):2523–2526
Muqattash A, Krunz M (2003) Power controlled dual channel (PCDC) medium access protocol for wireless ad hoc networks. In: IEEE INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications societies (IEEE Cat. no. 03CH37428), vol 1, pp 470–480
Ramanathan R, Rosales-Hain R (2000) Topology control of multihop wireless networks using transmit power adjustment. In: Proceedings IEEE INFOCOM 2000. Conference on computer communications. Nineteenth annual joint conference of the IEEE computer and communications societies
Dutta D, Choudhury K (2013) Network anomaly detection using PSO-ANN. Int J Comput Appl 77(2):35–42
Shing-Han L, Yu-Cheng K, Zong-Cyuan Z, Ying-Ping C, David CY (2015) A network behavior-based botnet detection mechanism using PSO and k-means. ACM Trans Manag Inf Syst 6(1):3
Priyadharshini C, ThamaraiRubini K (2012) PSO based route lifetime prediction algorithm for maximizing network lifetime in MANET. In: Recent trends in information technology (ICRTIT), 2012 international conference on IEEE, pp 270–275
Swain RR, Khilar PM (2017) Soft fault diagnosis in wireless sensor networks using PSO based classification. In: Region 10 conference, TENCON 2017 IEEE, pp 2456–2461
Li K, Bao J, Lu Z, Qi Q, Wang J (2017) A PSO-based virtual SDN customization for multi-tenant cloud services. In: Proceedings of the 11th international conference on ubiquitous information management and communication ACM, p 91
Lakshmanan L, Tomar DC (2014) Optimizing localization route using particle swarm-a genetic approach. Am J Appl Sci 11(3):520
Vimalarani C, Subramanian R, Sivanandam SN (2016) An enhanced PSO-based clustering energy optimization algorithm for wireless sensor network. Sci World J. https://doi.org/10.1155/2016/8658760
Cheng L, Wang Y, Chengdong W, Han Q (2015) A PSO-based maintenance strategy in wireless sensor networks. Intell Autom Soft Comput 21(1):65–75
Ren W, Zhao C (2013) A localization algorithm based on SFLA and PSO for wireless sensor network. Inf Technol J 12(3):502–505
Keun-Chang K (2012) An optimization of granular networks based on PSO and two-sided Gaussian contexts. Int J Adv Res Artif Intell 1(9):2012
Mahmoud A-A, Shadi A, Yaser J, Shehab Mohammed A, Gupta Brij B (2018) Accelerating 3D medical volume segmentation using GPUs. Multimed Tools Appl 77(4):4939–4958
Kaur H, Sharma S (2016) Analysis of metrics: improved hybrid ACO-PSO based routing algorithm for mobile ad-hoc network. In: 2016 Fourth international conference on parallel, distributed and grid computing (PDGC), pp 703–708
Aziz IT, Jin H, Abdulqadder IH, Imran RM, Flaih FMF (2017) Enhanced PSO for network reconfiguration under different fault locations in smart grids. In: 2017 International conference on smart technologies for smart nation (SmartTechCon), pp 1250–1254
Pluhacek M, Senkerik R, Viktorin A, Kadavy T (2017) Exploring the shortest path in PSO communication network. In: Computational intelligence (SSCI), 2017 IEEE symposium series on IEEE, pp 1–6
Hou R, Chang Y, Yang L (2017) Multi-constrained QoS routing based on PSO for named data networking. IET Commun 11(8):1251–1255
Salama Hussein F, Reeves Douglas S, Yannis V (1997) Evaluation of multicast routing algorithms for real-time communication on high-speed networks. IEEE J Sel Areas Commun 15(3):332–345
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Elbes, M., Alzubi, S., Kanan, T. et al. A survey on particle swarm optimization with emphasis on engineering and network applications. Evol. Intel. 12, 113–129 (2019). https://doi.org/10.1007/s12065-019-00210-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12065-019-00210-z