Skip to main content

Advertisement

Log in

Development and performance evaluation of hybrid KELM models for forecasting of agro-commodity price

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Incurring the benefits of kernel type-based extreme learning machine (KELM), this paper proposes a Grey wolf optimization based multiquadratic kernel KELM (GWO-KELM) models for effective forecasting of agro-commodity prices such as Chana and Barley. The objective is to obtain best possible weight between hidden and output layer of an artificial neural network using GWO optimization techniques. These weights are used in KELM model to achieve improved performance. To assess the superiority performance of the proposed models, similar results are obtained using simulation study by simulating GA-KELM (genetic algorithm based KELM), PSO-KELM (particle swarm optimization based KELM) and GWO-KELM multiquadratic kernel types (GWO-KELM) models. From exhaustive simulation result, it is demonstrated that GWO-KELM forecasting model offers the best performance using three models in terms of matrices. The study pertains to short and long range prediction for prices of Chana and Barley using publicly available database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lean Yu, Dai W, Tang L (2016) A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting. Eng Appl Artif Intell 47:110–121. https://doi.org/10.1016/j.engappai.2015.04.016

    Article  Google Scholar 

  2. Li X, Xie H, Wang R, Cai Y, Cao J, Wang F, Min H, Deng X (2016) Empirical analysis: stock market prediction via extreme learning machine. Neural Comput Appl 27(1):67–78. https://doi.org/10.1007/s00521-014-1550-z

    Article  Google Scholar 

  3. Liu H, Tian H-q, Li Y-f (2015) Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers Manag 100:16–22. https://doi.org/10.1016/j.enconman.2015.04.057

    Article  Google Scholar 

  4. Huang G, Huang G-B, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48. https://doi.org/10.1016/j.neunet.2014.10.001

    Article  MATH  Google Scholar 

  5. Zhang J-L, Zhang Yue-Jun, Zhang Lu (2015) A novel hybrid method for crude oil price forecasting. Energy Econ 49:649–659. https://doi.org/10.1016/j.eneco.2015.02.018

    Article  Google Scholar 

  6. Huang G-B, Zhu Qin-Yu, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501. https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  7. Wong WK, Guo ZX (2010) A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. Int J Prod Econ 128(2):614–624. https://doi.org/10.1016/j.ijpe.2010.07.008

    Article  Google Scholar 

  8. Qi Yu, Miche Y, Severin E, Lendasse A (2014) Bankruptcy prediction using extreme learning machine and financial expertise. Neurocomputing 128:296–302. https://doi.org/10.1016/j.neucom.2013.01.063

    Article  Google Scholar 

  9. Rafiei M, Niknam T, Khooban M-H (2017) Probabilistic forecasting of hourly electricity price by generalization of ELM for usage in improved wavelet neural network. IEEE Trans Ind Inform 13(1):71–79. https://doi.org/10.1109/TII.2016.2585378

    Article  Google Scholar 

  10. Tian H-X, Mao Z-Z (2010) An ensemble ELM based on modified AdaBoost. RT algorithm for predicting the temperature of molten steel in ladle furnace. IEEE Trans Autom Sci Eng 7(1):73–80. https://doi.org/10.1109/tase.2008.2005640

    Article  Google Scholar 

  11. Liu N, Lin Z, Koh Z, Huang G-B, Ser W, Ong MEH (2011) Patient outcome prediction with heart rate variability and vital signs. J Signal Process Syst 64(2):265–278. https://doi.org/10.1007/s11265-010-0480-y

    Article  Google Scholar 

  12. Yang Y, Li D, Duan Z (2017) Chinese vehicle license plate recognition using kernel-based extreme learning machine with deep convolutional features. IET Intel Transp Syst 12(3):213–219. https://doi.org/10.1049/iet-its.2017.0136

    Article  Google Scholar 

  13. Yang Z, Ce L, Lian L (2017) Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Appl Energy 190:291–305. https://doi.org/10.1016/j.apenergy.2016.12.130

    Article  Google Scholar 

  14. Liu X, Wang Q, Huang Y, Song Q, Zhao L (2017) A prediction method for deck motion of aircraft carrier based on particle swarm optimization and kernel extreme learning machine. Sens Mater 29(9):1291–1303

    Google Scholar 

  15. Li Q, Chen H, Huang H, Zhao X, Cai Z, Tong C, Liu W, Tian X (2017) An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis. Comput Math Methods Med. https://doi.org/10.1155/2017/9512741

    Article  Google Scholar 

  16. Ding S, Zhao H, Zhang Y, Xinzheng X, Nie R (2015) Extreme learning machine: algorithm, theory and applications. Artif Intell Rev 44(1):103–115. https://doi.org/10.1007/s10462-013-9405-z

    Article  Google Scholar 

  17. Shamshirband S, Mohammadi K, Tong CW, Petkovic D, Porcu E, Mostafaeipour A, Sudheer Ch, Sedaghat A (2016) Application of extreme learning machine for estimation of wind speed distribution. Clim Dyn 46(5–6):1893–1907. https://doi.org/10.1007/s00382-015-2682-2

    Article  Google Scholar 

  18. Shiri J, Shamshirband S, Kisi O, Karimi S, Bateni SM, Nezhad SHH, Hashemi A (2016) Prediction of water-level in the Urmia Lake using the extreme learning machine approach. Water Resour Manag 30(14):5217–5229. https://doi.org/10.1007/s11269-016-1480-x

    Article  Google Scholar 

  19. Zhou C, Yin K, Cao Y, Intrieri E, Ahmed B, Catani F (2018) Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method. Landslides 15(11):2211–2225. https://doi.org/10.1007/s10346-018-1022-0

    Article  Google Scholar 

  20. Wang M, Chen H, Li H, Cai Z, Zhao X, Tong C, Li J, Xin X (2017) Grey wolf optimization evolving kernel extreme learning machine: application to bankruptcy prediction. Eng Appl Artif Intell 63:54–68. https://doi.org/10.1016/j.engappai.2017.05.003

    Article  Google Scholar 

  21. Zhu Q-Y, Qin AK, Suganthan PN, Huang G-B (2005) Evolutionary extreme learning machine. Pattern Recognit 38(10):1759–1763. https://doi.org/10.1016/j.patcog.2005.03.028

    Article  MATH  Google Scholar 

  22. Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybernetics) 42(2):513–529. https://doi.org/10.1109/tsmcb.2011.2168604

    Article  Google Scholar 

  23. Wong PK, Wong KI, Vong CM, Cheung CS (2015) Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew Energy 74:640–647. https://doi.org/10.1016/j.renene.2014.08.075

    Article  Google Scholar 

  24. Wang F, Zhang Y, Rao Q, Li K, Zhang H (2017) Exploring mutual information-based sentimental analysis with kernel-based extreme learning machine for stock prediction. Soft Comput 21(12):3193–3205. https://doi.org/10.1007/s00500-015-2003-z

    Article  Google Scholar 

  25. Lv X, Chen H, Zhang Q, Li X, Huang H, Wang G (2018) An improved bacterial-foraging optimization-based machine learning framework for predicting the severity of somatization disorder. Algorithms 11(2):1–18. https://doi.org/10.3390/a11020017

    Article  MathSciNet  Google Scholar 

  26. Huijuan L, Bangjun D, Liu J, Xia H, Yeap WK (2017) A kernel extreme learning machine algorithm based on improved particle swam optimization. Memet Comput 9(2):121–128. https://doi.org/10.1007/s12293-016-0182-5

    Article  Google Scholar 

  27. Mohammadi K, Shamshirband S, Motamedi S, Petkovic D, Hashim R, Gocic M (2015) Extreme learning machine based prediction of daily dew point temperature. Comput Electron Agric 117:214–225. https://doi.org/10.1016/j.compag.2015.08.008

    Article  Google Scholar 

  28. Chen Y, Kloft M, Yang Y, Li C, Li L (2018) Mixed kernel based extreme learning machine for electric load forecasting. Neurocomputing 312:90–106. https://doi.org/10.1016/j.neucom.2018.05.068

    Article  Google Scholar 

  29. Zhang J (2013) A novel method for face recognition based on genetic algorithm optimized kernel extreme learning machine. Sens Transducers 161(12):34–38

    Google Scholar 

  30. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge. Online ISBN: 9780262275552

  31. Chakravarty S, Dash PK (2012) A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices. Appl Soft Comput 12(2):931–941. https://doi.org/10.1016/j.asoc.2011.09.013

    Article  Google Scholar 

  32. Adrian AM, Utamima A, Wang K-J (2015) A comparative study of GA, PSO and ACO for solving construction site layout optimization. KSCE J Civ Eng 19(3):520–527. https://doi.org/10.1007/s12205-013-1467-6

    Article  Google Scholar 

  33. Lin S-W, Ying K-C, Chen S-C, Lee Z-J (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35(4):1817–1824. https://doi.org/10.1016/j.eswa.2007.08.088

    Article  Google Scholar 

  34. Hung J-C (2011) Adaptive fuzzy-GARCH model applied to forecasting the volatility of stock markets using particle swarm optimization. Inf Sci 181(20):4673–4683. https://doi.org/10.1016/j.ins.2011.02.027

    Article  Google Scholar 

  35. Alavi AH, Gandomi AH (2011) Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput Struct 89(23–24):2176–2194. https://doi.org/10.1016/j.compstruc.2011.08.019

    Article  Google Scholar 

  36. Cheng L, Li S (2015) Prediction of slope displacement based on PSO-KELM model with mixed kernel. Electron J Geotech Eng 20(3):935–942

    Google Scholar 

  37. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirjharinee Parida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, N., Mishra, D., Das, K. et al. Development and performance evaluation of hybrid KELM models for forecasting of agro-commodity price. Evol. Intel. 14, 529–544 (2021). https://doi.org/10.1007/s12065-019-00295-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-019-00295-6

Keywords

Navigation