Skip to main content

Advertisement

Log in

A novel stacked sparse denoising autoencoder for mammography restoration to visual interpretation of breast lesion

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

This paper proposes a deep unsupervised learning based denoising autoencoder model for the restoration of degraded mammogram with visual interpretation of breast lumps or lesion in mammography images (called SSDAE). The proposed model attempts to intensify the underexposed and abnormal structural regions through noise elimination in mammography image. A deep stacked convolutional autoencoder is designed by combining the autoencoder and the deconvolution network which conjointly reduces noisy artifacts and improves image details in mammogram. The proposed SSDAE model takes large noisy mammogram image patches as input and extracts relevant features from target batches. The suggested model can extract relevant features and reduce the dimensionality through sparsity property of the image data while preserving the key features that have been applied to restore image data in feature space. In order to reconstruct a deafening mammogram, the proposed model is carried out through a patched base training on samples to suppress noise thereby preserving structural details in mammography imaging. Experimental results authenticate that the suggested SSDAE model outplays a number of state-of-the-art methods for both X-ray mammogram and ultrasonographic mammogram. The execution speed for target noisy images increases with fine tuning of the network when compared to other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Siegel R et al (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29

    Article  Google Scholar 

  2. Nikola BA, Peter J (2014) Abolishing mammography screening programs: a view from the Swiss medical board. N Engl J Med 370(21):1965–1967

    Article  Google Scholar 

  3. Sonka M, Hlavac V, Boyle R (2001) Image processing analysis and machine vision. Thomson Learn, Stamford

    Google Scholar 

  4. Sawant HK, Deore M (2010) A comprehensive review of image enhancement techniques. Int J Comput Technol Electron Eng 1(2):39–44

    Google Scholar 

  5. Diwakar M, Kumar M (2018) A review on CT image noise and its denoising. Biomed Signal Proc Control 42:73–88

    Article  Google Scholar 

  6. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth international conference on computer vision, IEEE 1998, pp 839–846

  7. Yan J, Lu WS (2015) Image denoising by generalized total variation regularization and least squares fidelity. Multidimens Syst Signal Process 26(1):243–266

    Article  MathSciNet  Google Scholar 

  8. Diwakar M, Kumar M (2016) Edge preservation based CT image denoising using Wiener filtering and thresholding in wavelet domain. In: Fourth international conference on parallel, distributed and grid computing (PDGC). IEEE 2016, pp 332–336

  9. Li Y, Sun J, Luo H (2014) A neuro-fuzzy networ kbased impulse noise filtering for gray scale images. Neurocomputing 127(2014):190–199

    Google Scholar 

  10. Xiao L, Li C, Wu Z, Wang T (2015) An enhancement method for X-ray image via fuzzy noise removal and homomorphic filtering. Neurocomputing 195:56–64

    Article  Google Scholar 

  11. Liu W, Wang Z, Liu X, Zeng N, Liu Y (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26

    Article  Google Scholar 

  12. Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros A (2016) Context encoders: feature learning by inpainting. In: Proceedings of the CVPR

  13. Vincent P (2011) A connection between score matching and denoising autoencoders. Neural Comput 23(7):1661–1674

    Article  MathSciNet  Google Scholar 

  14. Gondara L (2016) Medical image denoising using convolutional denoising autoencoders. In: Proceedings of the IEEE international conference data mining workshops (ICDMW 2016), pp 241–246

  15. Chen Y, Shi L, Feng O, Yang J, Shu H et al (2014) Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans Med Imaging 33(12):2271–2292

    Article  Google Scholar 

  16. Zhang Y, Tian X, Ren P (2014) An adaptive bilateral filter based framework for image denoising. Neurocomputing 140:299–316

    Article  Google Scholar 

  17. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR

  18. Mao XJ, Shen C, Yang YB (2016) Image restoration using convolutional autoencoders with symmetric skip connections. In: Proceedings of the NIPS

  19. Khaw HY, Soon FC, Chuah JH, Chow CO (2017) Image noise types recognition using convolutional neural network with principal components analysis. IET Image Process 11(12):1238–1245

    Article  Google Scholar 

  20. Guo Y, Liu Y et al (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48

    Article  Google Scholar 

  21. LeCun Y, Bengio Y et al (2015) Deep learning. Nature 521:436–444

    Article  Google Scholar 

  22. Chen H, Zhang Y (2017) Low-dose CT with a residual encoder–decoder convolutional neural network (RED-CNN). IEEE Trans Med Imaging 36(12):2524–2535

    Article  Google Scholar 

  23. Wolterink JM et al (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36(12):2536–2545

    Article  Google Scholar 

  24. Litjens G et al (2017) A survey on Deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  25. Liu Y, Zhang Y (2018) Low-dose CT restoration via stacked sparse denoising autoencoders. Neurocomputing 284:80–89

    Article  Google Scholar 

  26. Li Z et al (2014) Adaptive nonlocal means filtering based on local noise level for CT denoising. Med Phys 41(1)

  27. Shan H, Zhang Y et al (2018) 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans Med Imaging 37(6):1522–1534

    Article  Google Scholar 

  28. Gu J, Wang Z et al (2018) Recent advances in convolutional neural networks. Pattern Recognit 77:354–377

    Article  Google Scholar 

  29. Dong C et al (2015) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307

    Article  Google Scholar 

  30. Zhou K et al (2017) Deep learning for medical image analysis. Academic Press, Cambridge

    Google Scholar 

  31. Lee D, Choi S, Kim HJ (2018) Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography. Nucl Inst Methods Phys 88(4):97–104

    Article  Google Scholar 

  32. Gu K, Zhai G, Yang X, Zhang W (2015) Using free energy principle for blind image quality assessment. IEEE Trans Multimed 17(1):50–63

    Article  Google Scholar 

  33. Zhang Y, Zhang WH, Chen H, Yang NL, Li TY, Zhou JL (2013) Few-view image reconstruction combining total variation and a high-order norm. Int J Imaging Syst Technol 23(3):249–255

    Article  Google Scholar 

  34. Patraucean V, Handa A, Cipolla R (2016) Spatio-temporal video autoencoder with differentiable memory. In: International conference on learning representations. arxiv:1511.06309

  35. Hang Z, Gallo O, Frosio I, Kautz J (2016) Loss functions for image restoration with neural networks. In: IEEE transactions on computational imaging. ACM

  36. https://www.kaggle.com/kmader/mias-mammography

  37. http://www.mammoimage.org/databases/

  38. https://medpix.nlm.nih.gov/home

  39. https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM

  40. http://peipa.essex.ac.uk/

  41. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  42. Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Kr Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S.K., Biswas, B. & Ghosh, A. A novel stacked sparse denoising autoencoder for mammography restoration to visual interpretation of breast lesion. Evol. Intel. 14, 133–149 (2021). https://doi.org/10.1007/s12065-019-00344-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-019-00344-0

Keywords

Navigation