Skip to main content

Advertisement

Log in

Chaotic multi verse optimizer based fuzzy logic controller for frequency control of microgrids

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

This paper represents an arrangement of fuzzy PD and derivative filter based PID controller (FPIDF) with its optimally designed membership functions and is employed for the load frequency control (LFC) of isolated multi- microgrids. The performance of a recently developed multi verse optimizer (MVO) algorithm is improved by introducing chaotic map appropriately in the algorithm. The improved algorithm, named as CMVO algorithm is applied to tune the proportional integral derivative (PID) controller gains for the LFC of microgrid. The superiority of the proposed CMVO algorithm is examined by its superior performance compared to MVO PID, recently published IAYA PID, JAYA PID and GA PID in the microgrid system. Further, CMVO based FPIDF with its optimized membership position (FPIDF-OM) outperforms compared to CMVO based FPIDF, IJAYA tuned FPID and FPD/PI-PD controller in microgrid system. Better dynamic performances are found with the proposed technique for stochastic type wind power, solar irradiance and load variations in the microgrid compared with FPIDF and PID. The robustness of the proposed technique is established by the sensitivity analysis. The proposed design approach has been extended to a microgrid model including biogas turbine generator, biodiesel engine generator and aqua electrolyser along with fuel cell unit. Finally, OPAL-RT based hardware-in-the-loop simulation of proposed techniques has been done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

i:

Subscript referring to area-i (i = 1,2)

Ri :

Speed regulation constant (p.u.)

Bi :

Frequency bias constant (p.u.)

KTi, TTi :

Gain(p.u.) and time(s) constants of turbine, respectively

KGi, TGi :

Gain(p.u.) and time(s) constants of speed governor, respectively

KWTi, TWTi :

Gain(p.u.) and time(s) constants of wind turbine (WT) unit, respectively

KPVi, TPVi :

Gain(p.u.) and time(s) constants of photovoltaic(PV) unit, respectively

KBESSi, TBESSi :

Gain(p.u.) and time(s) constants of battery energy storage system(BESS) unit, respectively

KFESSi, TFESSi :

Gain(p.u.) and time(s) constants of flywheel energy storage system(FESS) unit, respectively

Mi :

Inertia constant (p.u.)

Di :

Damping constant (p.u.)

T12 :

Synchronizing coefficient

T CR, T BG, Xc, Yc, b B,TBT :

Biogas turbine generator (BGTG) unit’s combustion reaction delay, biogas delay, lead time, lag time, valve actuator and discharge time constants respectively

K VA, T VA, K BE, T BE :

Biodiesel engine generator (BDEG) unit’s valve gain, valve actuator delay, engine gain and time constants respectively

K AEi, T AEi :

Gain(p.u.) and time (s) constants of Aqua electrolyser (AE) unit, respectively

K FCi, T FCi :

Gain(p.u.) and time (s) constants of Fuel cell (FC) unit, respectively

P n :

Fraction of WT and PV power

Pf1, Pf2 :

Participation factors of BGTG and BDEG respectively.

∆PLi :

Incremental change in load power demand in area-i

∆Fi, ∆PTie :

System frequency and tie line power deviation (p.u.), respectively

PPVi, PWTi :

Power generated from PV and WT (p.u.) respectively

m :

Number of objects(variables to be optimized) in Multi Verse Optimizer (MVO)/Chaotic MVO (CMVO) algorithm

n :

Number of universes (solutions) in MVO/CMVO algorithm

U:

Matrix of size (n × m) for random populations

\({{u}_{i}}^{j}\) :

Element of U representing jth parameter of ith universe,(i = 1 to n, j = 1 to m)

\(NI(Ui): \mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{z}\mathrm{e}\mathrm{d} \mathrm{i}\mathrm{n}\mathrm{f}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\) :

ith universe

\({{u}_{k}}^{j}\) :

jth Parameter of kth universe (chosen by roulette wheel selection method)

T:

Maximum time(maximum number of iterations)

t :

Current time (Current iteration)

\({u}_{j}^{*}\) :

jth Parameter of the fittest solution u*obtained so far

\({\mathrm{l}\mathrm{l}}_{\mathrm{j} },{\mathrm{u}\mathrm{l}}_{\mathrm{j}}\) :

Lower and upper limit of jth variable

\({\mathrm{W}\mathrm{E}\mathrm{P}}_{\mathrm{m}\mathrm{i}\mathrm{n}} ,{ \mathrm{W}\mathrm{E}\mathrm{P}}_{\mathrm{m}\mathrm{a}\mathrm{x}}\) :

Minimum and maximum value of wormhole existence probability (WEP), respectively

sp :

Parameter signifies the speedy and precision of local search over the cycles

\({c}_{t}\) :

Random number generated by Chebyshev map in CMVO algorithm

c0 :

Initial value in Chebyshev map

\({TDR}_{C}\) :

Travelling distance rate (TDR) value modified by Chebyshev map

References

  1. Bevrani H, Habibi F, Babahajyani P, Watanabe M, Mitani Y (2012) Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach. IEEE Trans Smart Grid 4:1935–1944

    Article  Google Scholar 

  2. Pan I, Das S (2014) Kriging based surrogate modeling for fractional order control of microgrids. IEEE Trans Smart Grid 6(1):36–44

    Article  Google Scholar 

  3. Şerban I, Marinescu C (2011) Aggregate load-frequency control of a wind-hydro autonomous microgrid. Renewable Energy 36(12):3345–3354

    Article  Google Scholar 

  4. Lasseter RH, Piagi P (2004) Microgrid: a conceptual solution. IEEE Power Electron Spec Conf 6:4285–4291

    Google Scholar 

  5. Yang J, Zeng Z, Tang Y, Yan J, He H, Wu Y (2015) Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory. Energies 8(3):2145–2164

    Article  Google Scholar 

  6. Chowdhury AH, Asaduz-Zaman M (2014) Load frequency control of multi-microgrid using energy storage system. In: 8th IEEE international conference on electrical and computer engineering. pp. 548–551.

  7. Kargarian A, Rahmani M (2015) Multi-microgrid energy systems operation incorporating distribution-interline power flow controller. Electric Power Syst Res 129:208–216

    Article  Google Scholar 

  8. Khalghani MR, Khooban MH, Mahboubi-Moghaddam E, Vafamand N, Goodarzi M (2016) A self-tuning load frequency control strategy for microgrids: Human brain emotional learning. Int J Electr Power Energy Syst 75:311–319

    Article  Google Scholar 

  9. Khooban MH (2017) Secondary load frequency control of time-delay stand-alone microgrids with electric vehicles. IEEE Trans Industr Electron 65(9):7416–7422

    Article  Google Scholar 

  10. Dehghani M, Khooban MH, Niknam T, Rafiei SM (2016) Time-varying sliding mode control strategy for multibus low-voltage microgrids with parallel connected renewable power sources in islanding mode. J Energy Eng 142(4):05016002

    Article  Google Scholar 

  11. Goya T, Omine E, Kinjyo Y, Senjyu T, Yona A, Urasaki N, Funabashi T (2011) Frequency control in isolated island by using parallel operated battery systems applying H∞ control theory based on droop characteristics. IET Renew Power Gener 5(2):160–166

    Article  Google Scholar 

  12. Khooban MH, Niknam T, Blaabjerg F, Davari P, Dragicevic T (2016) A robust adaptive load frequency control for micro-grids. ISA Trans 65:220–229

    Article  Google Scholar 

  13. Das DC, Roy AK, Sinha N (2012) GA based frequency controller for solar thermal–diesel–wind hybrid energy generation/energy storage system. Int J Electr Power Energy Syst 43(1):262–279

    Article  Google Scholar 

  14. Mahto T, Mukherjee V (2016) Evolutionary optimization technique for comparative analysis of different classical controllers for an isolated wind–diesel hybrid power system. Swarm Evolut Comput 26:120–136

    Article  Google Scholar 

  15. El-Fergany AA, El-Hameed MA (2017) Efficient frequency controllers for autonomous two-area hybrid microgrid system using social-spider optimiser. IET Gener Transm Distrib 11(3):637–648

    Article  Google Scholar 

  16. Sahoo BP, Panda S (2018) Improved grey wolf optimization technique for fuzzy aided PID controller design for power system frequency control. Sustain Energy Grids Netw 16:278–299

    Article  Google Scholar 

  17. Sahu RK, Panda S, Yegireddy NK (2014) A novel hybrid DEPS optimized fuzzy PI/PID controller for load frequency control of multi-area interconnected power systems. J Process Control 24(10):1596–1608

    Article  Google Scholar 

  18. Sahu RK, Panda S, Pradhan PC (2015) Design and analysis of hybrid firefly algorithm-pattern search based fuzzy PID controller for LFC of multi area power systems. Int J Electr Power Energy Syst 69:200–212

    Article  Google Scholar 

  19. Khooban MH, Dragicevic T, Blaabjerg F, Delimar M (2017) Shipboard microgrids: a novel approach to load frequency control. IEEE Trans Sustain Energy 9(2):843–852

    Article  Google Scholar 

  20. Khooban MH, Niknam T, Blaabjerg F, Dragičević T (2017) A new load frequency control strategy for micro-grids with considering electrical vehicles. Electric Power Syst Res 143:585–598

    Article  Google Scholar 

  21. Khooban MH, Niknam T, Shasadeghi M, Dragicevic T, Blaabjerg F (2017) Load frequency control in microgrids based on a stochastic noninteger controller. IEEE Trans Sustain Energy 9(2):853–861

    Article  Google Scholar 

  22. Gheisarnejad M, Khooban MH (2019) Secondary load frequency control for multi-microgrids: HiL real-time simulation. Soft Comput 23:5785–5798

    Article  Google Scholar 

  23. Tarkeshwar M, Mukherjee V (2015) Quasi-oppositional harmony search algorithm and fuzzy logic controller for load frequency stabilisation of an isolated hybrid power system. IET Gener Transm Distrib 9(5):427–444

    Article  Google Scholar 

  24. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  25. Xiong G, Zhang J, Shi D, He Y (2018) Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers Manage 174:388–405

    Article  Google Scholar 

  26. Arora S, Anand P (2019) Binary butterfly optimization approaches for feature selection. Expert Syst Appl 116:147–160

    Article  Google Scholar 

  27. Mafarja MM, Mirjalili S (2017) Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neuro Comput 260:302–312

    Google Scholar 

  28. Khadanga RK, Kumar A (2016) Hybrid adaptive ‘gbest’-guided gravitational search and pattern search algorithm for automatic generation control of multi-area power system. IET Gener Transm Distrib 11(13):3257–3267

    Article  Google Scholar 

  29. Jangir P, Parmar SA, Trivedi IN, Bhesdadiya RH (2017) A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem. Int J Eng Sci Technol 20(2):570–586

    Google Scholar 

  30. Kaur G, Arora S (2018) Chaotic whale optimization algorithm. J Comput Des Eng 5(3):275–284

    Google Scholar 

  31. Kohli M, Arora S (2018) Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Des Eng 5(4):458–472

    Google Scholar 

  32. Arora S, Singh S (2015) Butterfly algorithm with levy flights for global optimization. In IEEE international conference on signal processing, computing and control (ISPCC), pp. 220–224

  33. Gandomi AH, Yang XS (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232

    Article  MathSciNet  Google Scholar 

  34. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  35. Elgerd OI (2007) Electric energy systems theory: an introduction. Tata Mc-Graw Hill, New Delhi

    Google Scholar 

  36. Chowdhury AH, Asaduz-Zaman M (2014) Load frequency control of multi-microgrid using energy storage system. In 8th IEEE international conference on electrical and computer engineering, pp 548–551

  37. Barik AK, Das DC (2018) Expeditious frequency control of solar photovoltaic/biogas/biodiesel generator based isolated renewable microgrid using grasshopper optimisation algorithm. IET Renew Power Gener 12(14):1659–1667

    Article  Google Scholar 

  38. Gheisarnejad, M., Khooban, M. H., & Dragicevic, T. (2019). The future 5G network based secondary load frequency control in maritime microgrids. IEEE J Emerg Sel Top Power Electron

  39. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821

    Article  MathSciNet  Google Scholar 

  40. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Electrical Engineering department, Veer Surendra Sai University of Technology, Burla, Odisha, India for facilitating their Computational Laboratory for conducting OPAL-RT based HIL real time simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhuti Prasad Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Nominal values of the system investigated [22, 37, 38]

System parameter

Value

System parameter

Value

R1

0.05

Di

1

R2

0.04

T12

1.4

B1

10

T BG

0.23 s

B1

12.5

T CR

0.01 s

TTi

0.4

Xc

0.6

TGi

0.1

Yc

1 s

TWTi

0.5

b B

0.05

TPVi

1.5

TBT

0.2 s

TBESSi

0.1

K VA

1

TFESSi

0.1

T VA

0.05 s

KTi

1

K BE

1

KGi

1

T BE

0.5 s

KBESS1

 − 3

K AEi

0.002

KBESS2

 − 4

K FCi

1/50

KFESS1

 − 1.5

T AEi

0.5 s

KFESS1

 − 2

T FCi

4 s

KWTi

1

P n

0.6

KPVi

1

Pf1

0.75

Mi

8

Pf2

0.25

Appendix 2

Pseudo code of CMVO algorithm

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B.P., Panda, S. Chaotic multi verse optimizer based fuzzy logic controller for frequency control of microgrids. Evol. Intel. 14, 1597–1618 (2021). https://doi.org/10.1007/s12065-020-00405-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00405-9

Keywords

Navigation