Skip to main content

Advertisement

Log in

Application of grey wolf optimization algorithm for load frequency control in multi-source single area power system

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

In this paper, application of evolutionary intelligence-based Grey Wolf Optimizer (GWO) algorithm has been presented to estimate the optimal parameters of Proportional-Integral-Derivative (PID) controller for load frequency control (LFC) in multi-source single area power network. The multi-source single area power network which is considered here is comprised of reheat turbine thermal power plant, gas power plant and hydro power plant with the mechanical hydraulic governor. In this paper, the parameters of PID controller for LFC of under study system are optimized using GWO algorithm by considering four important performance indices (instead of considering one or two) namely Integral of Time-weighted Squared Error (ITSE), Integral of Time-weighted Absolute Error (ITAE), Integral of Squared Error (ISE) and Integral of Absolute Error (IAE). The implemented technique has been compared with Genetic Algorithm (GA) technique for 1%, 2% and 5% load disturbances to show the effectiveness and applicability for LFC in multi-source single area power network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344:243–278. https://doi.org/10.1016/j.tcs.2005.05.020

    Article  MathSciNet  MATH  Google Scholar 

  2. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell 1:33–57. https://doi.org/10.1007/s11721-007-0002-0

    Article  Google Scholar 

  3. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46. https://doi.org/10.1016/j.swevo.2013.06.001

    Article  Google Scholar 

  5. Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider Monkey Optimization algorithm for numerical optimization. Memetic Comput 6:31–47. https://doi.org/10.1007/s12293-013-0128-0

    Article  Google Scholar 

  6. Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24:169–174. https://doi.org/10.1007/s00521-013-1367-1

    Article  Google Scholar 

  7. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  8. Yu JJQ, Li VOK (2015) A social spider algorithm for global optimization. Appl Soft Comput J 30:614–627. https://doi.org/10.1016/j.asoc.2015.02.014

    Article  Google Scholar 

  9. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  10. Gupta E, Saxena A (2015) Robust generation control strategy based on Grey Wolf Optimizer. J Electr Syst 11:174–188

    Google Scholar 

  11. Chaman-Motlagh A (2015) Superdefect Photonic Crystal Filter Optimization Using Grey Wolf Optimizer. IEEE Photonics Technol Lett 27:2355–2358. https://doi.org/10.1109/LPT.2015.2464332

    Article  Google Scholar 

  12. Sulaiman MH, Mustaffa Z, Mohamed MR, Aliman O (2015) Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Appl Soft Comput J 32:286–292. https://doi.org/10.1016/j.asoc.2015.03.041

    Article  Google Scholar 

  13. El-Fergany AA, Hasanien HM (2015) Single and Multi-objective Optimal Power Flow Using Grey Wolf Optimizer and Differential Evolution Algorithms. Electr Power Components Syst 43:1548–1559. https://doi.org/10.1080/15325008.2015.1041625

    Article  Google Scholar 

  14. Song X, Tang L, Zhao S et al (2015) Grey Wolf Optimizer for parameter estimation in surface waves. Soil Dyn Earthq Eng 75:147–157. https://doi.org/10.1016/j.soildyn.2015.04.004

    Article  Google Scholar 

  15. Komaki GM, Kayvanfar V (2015) Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time. J Comput Sci 8:109–120. https://doi.org/10.1016/j.jocs.2015.03.011

    Article  Google Scholar 

  16. Mirjalili S (2015) How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl Intell 43:150–161. https://doi.org/10.1007/s10489-014-0645-7

    Article  Google Scholar 

  17. Zhang S, Zhou Y, Li Z, Pan W (2016) Grey Wolf optimizer for unmanned combat aerial vehicle path planning. Adv Eng Softw 99:121–136. https://doi.org/10.1016/j.advengsoft.2016.05.015

    Article  Google Scholar 

  18. Pradhan M, Roy PK, Pal T (2016) Grey wolf optimization applied to economic load dispatch problems. Int J Electr Power Energy Syst 83:325–334. https://doi.org/10.1016/j.ijepes.2016.04.034

    Article  Google Scholar 

  19. Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119. https://doi.org/10.1016/j.eswa.2015.10.039

    Article  Google Scholar 

  20. Jayakumar N, Subramanian S, Ganesan S, Elanchezhian EB (2016) Grey wolf optimization for combined heat and power dispatch with cogeneration systems. Int J Electr Power Energy Syst 74:252–264. https://doi.org/10.1016/j.ijepes.2015.07.031

    Article  Google Scholar 

  21. Nuaekaew K, Artrit P, Pholdee N, Bureerat S (2017) Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer. Expert Syst Appl 87:79–89. https://doi.org/10.1016/j.eswa.2017.06.009

    Article  Google Scholar 

  22. Ali M, El-Hameed MA, Farahat MA (2017) Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renew Energy 111:455–462. https://doi.org/10.1016/j.renene.2017.04.036

    Article  Google Scholar 

  23. Şimşir Ş, Taşpınar N (2017) Pilot tones design using Grey Wolf Optimizer for OFDM–IDMA system. Phys Commun 25:259–267. https://doi.org/10.1016/j.phycom.2017.08.010

    Article  Google Scholar 

  24. Zhang S, Zhou Y (2017) Template matching using grey wolf optimizer with lateral inhibition. Optik (Stuttg) 130:1229–1243. https://doi.org/10.1016/j.ijleo.2016.11.173

    Article  Google Scholar 

  25. Liu H, Wu H, Li Y (2018) Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction. Energy Convers Manag 161:266–283. https://doi.org/10.1016/j.enconman.2018.02.006

    Article  Google Scholar 

  26. Gujarathi PK, Shah VA, Lokhande MM (2018) Grey wolf algorithm for multidimensional engine optimization of converted plug-in hybrid electric vehicle. Transp Res Part D Transp Environ 63:632–648. https://doi.org/10.1016/j.trd.2018.06.003

    Article  Google Scholar 

  27. Dehghani M, Seifi A, Riahi-Madvar H (2019) Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization. J Hydrol 576:698–725. https://doi.org/10.1016/j.jhydrol.2019.06.065

    Article  Google Scholar 

  28. Rana KPS, Kumar V, Sehgal N, George S (2019) A Novel [Formula presented] feedback based control scheme using GWO tuned PID controller for efficient MPPT of PEM fuel cell. ISA Trans 93:312–324. https://doi.org/10.1016/j.isatra.2019.02.038

    Article  Google Scholar 

  29. Nayak B, Mohapatra A, Mohanty KB (2019) Parameter estimation of single diode PV module based on GWO algorithm. Renew Energy Focus 30:1–12. https://doi.org/10.1016/j.ref.2019.04.003

    Article  Google Scholar 

  30. Manikandan K (2019) Diagnosis of diabetes diseases using optimized fuzzy rule set by grey wolf optimization. Pattern Recognit Lett 125:432–438. https://doi.org/10.1016/j.patrec.2019.06.005

    Article  Google Scholar 

  31. Shabeerkhan S, Padma A (2020) A novel GWO optimized pruning technique for inexact circuit design. Microprocess Microsyst 73:102975. https://doi.org/10.1016/j.micpro.2019.102975

    Article  Google Scholar 

  32. Kalemci EN, İkizler SB, Dede T, Angın Z (2020) Design of reinforced concrete cantilever retaining wall using Grey wolf optimization algorithm. Structures 23:245–253. https://doi.org/10.1016/j.istruc.2019.09.013

    Article  Google Scholar 

  33. Xianming L, Ping L, Baocun Z et al (2020) Localization of multiple leaks in a fluid pipeline based on ultrasound velocity and improved GWO. Process Saf Environ Prot 137:1–7. https://doi.org/10.1016/j.psep.2020.02.006

    Article  Google Scholar 

  34. Ibraheem A, Kumar P, Kothari DP (2005) Recent philosophies of automatic generation control strategies in power systems. IEEE Trans Power Syst 20:346–357

    Article  Google Scholar 

  35. Parmar KPS, Majhi S, Kothari DP (2014) LFC of an interconnected power system with multi-source power generation in deregulated power environment. Int J Electr Power Energy Syst 57:277–286. https://doi.org/10.1016/j.ijepes.2013.11.058

    Article  Google Scholar 

  36. Barisal AK (2015) Comparative performance analysis of teaching learning based optimization for automatic load frequency control of multi-source power systems. Int J Electr Power Energy Syst 66:67–77. https://doi.org/10.1016/j.ijepes.2014.10.019

    Article  Google Scholar 

  37. Mohanty B, Panda S, Hota PK (2014) Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system. Int J Electr Power Energy Syst 54:77–85. https://doi.org/10.1016/j.ijepes.2013.06.029

    Article  Google Scholar 

  38. Tan W (2009) Tuning of PID load frequency controller for power systems. Energy Convers Manag 50:1465–1472. https://doi.org/10.1016/j.enconman.2009.02.024

    Article  Google Scholar 

  39. Hassanat A, Almohammadi K, Alkafaween E et al (2019) Choosing mutation and crossover ratios for genetic algorithms-a review with a new dynamic approach. Inf 10:1–36. https://doi.org/10.3390/info10120390

    Article  Google Scholar 

  40. Bhatt P, Roy R, Ghoshal SP (2011) Comparative performance evaluation of SMES-SMES, TCPS-SMES and SSSC-SMES controllers in automatic generation control for a two-area hydro-hydro system. Int J Electr Power Energy Syst 33:1585–1597. https://doi.org/10.1016/j.ijepes.2010.12.015

    Article  Google Scholar 

  41. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci (Ny) 180:2044–2064. https://doi.org/10.1016/j.ins.2009.12.010

    Article  Google Scholar 

  42. Friedman M (1940) A Comparison of Alternative Tests of Significance for the Problem of m Rankings. Ann Math Stat 11:86–92. https://doi.org/10.1214/aoms/1177731944

    Article  MathSciNet  MATH  Google Scholar 

  43. Friedman M (1937) The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J Am Stat Assoc 32:675–701. https://doi.org/10.1080/01621459.1937.10503522

    Article  MATH  Google Scholar 

  44. Davenport JM (1980) Approximations of the critical region of the friedman statistic. Commun Stat - Theory Methods 9:571–595. https://doi.org/10.1080/03610928008827904

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Paliwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paliwal, N., Srivastava, L. & Pandit, M. Application of grey wolf optimization algorithm for load frequency control in multi-source single area power system. Evol. Intel. 15, 563–584 (2022). https://doi.org/10.1007/s12065-020-00530-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00530-5

Keywords

Navigation