Abstract
This paper presents a novel simplified mathematical modeling that can solve a path planning problem comprising three agents in a triangular formation. The problem is modeled to optimize the trajectories of the agents and to minimize the distances traveled. The trajectories are obtained in a way that deviates them from fixed obstacles whose dimensions are known. Furthermore, geometry and orientation constraints of the formation of the multi-agent are imposed. Heuristics methods such as the Genetic Algorithm, Differential Evolution and Particle Swarm Optimization are applied to solve the non-linear algebraic equations which represent the system. Comparisons are presented among the results of the different methods highlighting the processing time and the convergence to the global minimum solution. The results prove that all the algorithms can be applied to the path planning problem with constraints. The Particle Swarm Optimization method presents the lowest processing time for all simulated cases. However, the Differential Evolution method is more robust than the others when searching for the global minimum solution.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12065-020-00534-1/MediaObjects/12065_2020_534_Fig14_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Guerrero JA, Lozano R (2012) Flight formation control. Wiley, New York
Kumbasar S (2015) Nonlinear guidance and control of leader-follower UAV formations. Ancara, Turkey, Turkey. Acesso em May de 2018, disponível em http://etd.lib.metu.edu.tr/upload/12618530/index.pdf
Desai JP, Ostrowski J, Kumar V (1998) Controlling formations of multiple mobile robots in robotics and automation. Int Conf Robot Autom 4:2864–2869. https://doi.org/10.1109/ROBOT.1998.680621
Tan K-H, Lewis MA (1996) Virtual structures for high-precision cooperative mobile robotic control. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems. IROS ‘96, Osaka, Japan, vol 1, pp 132–139. https://doi.org/10.1109/IROS.1996.570643
Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings. 1985 IEEE international conference on robotics and automation. IEEE, St. Louis, Missouri, pp 90–98. https://doi.org/10.1109/ROBOT.1985.1087247
Saber R, Murray R (2002) Graph rigidity and distributed formation stabilization of multi-vehicle systems. in: proceedings of the 41st ieee conference on decision and control. IEEE, Las Vegas, NV, pp 2965–2971. https://doi.org/10.1109/CDC.2002.1184307
Tsourdos A, White B, Shanmugavel M (2010) Cooperative path planning of unmanned aerial vehicles. Wiley, New York
Kim DH (2009) Escaping route method for a trap situation in local path planning. Int J Control Autom Syst 7:495–500
Okada T, Beuran R, Nakata J, Tan Y, Shinoda Y (2007) Collaborative motion planning of autonomous robots. In: 2007 International conference on collaborative computing: networking, applications and worksharing (CollaborateCom 2007), New York, NY, pp 328–335
Guzzi J, Chavez-Garcia RO, Nava M, Gambardella LM, Giusti A (2020) Path planning with local motion estimations. IEEE Robot Autom Lett 5(2):2586–2593
Kim H, Kim D, Kim H, Shin J-U, Myung H (2016) An extended any-angle path planning algorithm for maintaining formation of multi-agent jellyfish elimination robot system. Int J Control Autom Syst 14:598–607
Lian F-L (2008) Cooperative path planning of dynamical multiagent system using differential flatness approach. Int J Control Autom Syst 6(3):401–412
Lee S (2006) Sequential quadratic programming based global path re-planner for a mobile manipulator. Int J Control Autom Syst 4(3):318–324
Isapov N, Tasankova DD (2012) Potential field based formation control in trajectory tracking and obstacle avoidance tasks. In: 6th IEEE international conference intelligent systems. Sofia, Bulgaria: IEEE. https://doi.org/10.1109/IS.2012.6335117
Arokiasami WA, Vadakkeepat P, Srinivasan D, Chen KT (2016) Interoperable multi-agent framework for unmanned aerial/ground vehicles: towards robot autonomy. Complex Intell Syst 2(1):45–59. https://doi.org/10.1007/s4074
Mitchell M (2013) Genetic algorithms: an overview. Wiley Period. https://doi.org/10.1002/cplx.6130010108
Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence, 1st edn. MIT Press, Cambridge
Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328
Cheng SL, Hwang C (2001) Optimal approximation of linear systems by a differential evolution algorithm. IEEE Trans Syst Man Cybern Parts A Syst Hum 31(6):698–707. https://doi.org/10.1109/3468.983425
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan, pp 39–43. https://doi.org/10.1109/MHS.1995.494215
Eberhart RC, Shi Y (2011) Computational intelligence: concepts to implementations. Elsevier, Amsterdam
AGX aposta em VANT de longo alcance em 2012 (2011) Defesa Net: http://www.defesanet.com.br/tecnologia/noticia/3918/AGX-aposta-em-VANT-de-longo-alcance-em-2012. Accessed May 2018
Acknowledgements
This work was financially supported by CAPES in the Master´s in Mechanical Engineering program at EESC - USP.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
de Lima, J.V.C.F., Belo, E.M. & Marques, V.A. Multi-agent path planning with nonlinear restrictions. Evol. Intel. 14, 191–201 (2021). https://doi.org/10.1007/s12065-020-00534-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12065-020-00534-1