Skip to main content

Advertisement

Log in

Evaluation of brain tumor using brain MRI with modified-moth-flame algorithm and Kapur’s thresholding: a study

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Brain abnormality is a severe illness in humans. An unrecognised and untreated brain illness will lead to a lot of complications despite of gender and age. Brain tumor is one of the severe conditions in humans; begins due to a variety of unavoidable and unpredicted reasons. The clinical level diagnosis of brain tumor is performed with the help of non-invasive imaging procedures, such as Computed-Tomography and Magnetic-Resonance-Imaging. The proposed work implements an image processing procedure to extract the tumor section from the clinical-grade MRI slices recorded with Flair and T2 modalities. This procedure integrates thresholding and segmentation procedures to extract the tumor division from 2D MRI slices with better accuracy. MRI slices with the skull section are considered in this work and the extraction of the tumor is further achieved by implementing the Modified Moth-Flame Optimization algorithm based Kapur’s thresholding and a chosen segmentation technique. Benchmark images of BRAINIX and TCIA-GBM datasets are used in this work for experimental investigation. The outcome establishes the performance values attained with Flair modality images are slightly better compared to T2 modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Venkata KP, Sasikumar G, Mohammad SO (2019) Internet of things and personalized healthcare systems. SpringerBriefs in Forensic and Medical Bioinformatics, Springer, Berlin

    Google Scholar 

  2. Naveen D, Bhatnagar V, Singh M (2018) A fuzzy-based automatic prediction system for quality evaluation of conceptual data warehouse models. Int J Data Anal Tech Strateg 10(3):317–333. https://doi.org/10.1504/IJDATS.2018.094131

    Article  Google Scholar 

  3. Sangwan N, Naveen D (2017) A classification framework towards application of data mining in collaborative filtering. Collab Filter Using Data Min Anal. https://doi.org/10.4018/978-1-5225-0489-4.ch005

    Article  Google Scholar 

  4. Sarowar MG, Kamal MS, Dey N (2019) Internet of things and its impacts in computing intelligence: a comprehensive review–IoT application for big data. Big Data Anal Smart Connect Cities. https://doi.org/10.4018/978-1-5225-6207-8.ch005

    Article  Google Scholar 

  5. Bahadure NB, Ray AK, Thethi HP (2017) Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. Int J Biomed Imaging 2017:9749108. https://doi.org/10.1155/2017/9749108

    Article  Google Scholar 

  6. Anter AM, Souod MAE, Azar AT, Hassanien AE (2014) A hybrid approach to diagnosis of hepatic tumors in computed tomography images. Int J Rough Sets Data Anal (IJRSDA) 1(2):31–48. https://doi.org/10.3233/HIS-150209

    Article  Google Scholar 

  7. Banu NPK, Azar AT, Inbarani HH (2017) Fuzzy firefly clustering for tumour and cancer analysis. Int J Model Ident Control 27(2):92–103. https://doi.org/10.1504/IJMIC.2017.082941

    Article  Google Scholar 

  8. Azar AT, Balas VE, Olariu T (2014) Classification of EEG-based brain–computer interfaces. Stud Comput Intell 486:97–106. https://doi.org/10.1007/978-3-319-00467-9_9

    Article  Google Scholar 

  9. Dey N et al (2019) Social-group-optimization based tumor evaluation tool for clinical brain MRI of Flair/diffusion-weighted modality. Biocybern Biomed Eng 39(3):843–856. https://doi.org/10.1016/j.bbe.2019.07.005

    Article  Google Scholar 

  10. Pugalenthi R et al (2019) Evaluation and classification of the brain tumor MRI using machine learning technique. Control Eng Appl Inf 21(4):12–21

    Google Scholar 

  11. Satapathy SC, Rajinikanth V (2018) Jaya algorithm guided procedure to segment tumor from brain MRI. J Optim 2018:12. https://doi.org/10.1155/2018/3738049

    Article  Google Scholar 

  12. Fernandes SL et al (2019) A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput Applic. 32:1–12. https://doi.org/10.1007/s00521-019-04369-5

    Article  Google Scholar 

  13. Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  14. Ganesan J, Inbarani HH, Azar AT, Polat K (2017) Tolerance rough set firefly-based quick reduct. Neural Comput Appl 28(10):2995–3008. https://doi.org/10.1007/s00521-016-2514-2

    Article  Google Scholar 

  15. Acharya UR et al (2019a) Automatic detection of ischemic stroke using higher order spectra features in brain MRI images. Cogn Syst Res 58:134–142. https://doi.org/10.1016/j.cogsys.2019.05.005

    Article  Google Scholar 

  16. Talo M et al (2019) Convolutional neural networks for multi-class brain disease detection using MRI images. Comput Med Imaging Graph 78:101673. https://doi.org/10.1016/j.compmedimag.2019.101673

    Article  Google Scholar 

  17. Raghavendra U et al (2019) Artificial intelligence techniques for automated diagnosis of neurological disorders. European Neurol 82:41–64. https://doi.org/10.1159/000504292

    Article  Google Scholar 

  18. Rajinikanth V, Dey N, Satapathy SC, Ashour AS (2018) An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Futur Gener Comput Syst 85:160–172

    Article  Google Scholar 

  19. Acharya UR et al (2019b) Automated detection of Alzheimer’s disease using brain MRI images–a study with various feature extraction techniques. J Med Syst 43(9):302. https://doi.org/10.1007/s10916-019-1428-9

    Article  Google Scholar 

  20. Jahmunah V et al (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698. https://doi.org/10.1016/j.artmed.2019.07.006

    Article  Google Scholar 

  21. Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S (2017) Entropy based segmentation of tumor from brain MR images–A study with teaching learning based optimization. Pattern Recogn Lett 94:87–95. https://doi.org/10.1016/j.patrec.2017.05.028

    Article  Google Scholar 

  22. Rajinikanth V, Satapathy SC, Dey N, Lin H (2018) Evaluation of ischemic stroke region from CT/MR images using hybrid image processing techniques. Intelligent Multidimensional Data and Image Processing, pp 194–219. https://doi.org/10.4018/978-1-5225-5246-8.ch007

  23. Palani TK, Parvathavarthini B, Chitra K (2016) Segmentation of brain regions by integrating meta heuristic multilevel threshold with markov random field. Current Med Imaging Rev 12(1):4–12

    Article  Google Scholar 

  24. Menze B, Reyes M, Leemput KV et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Article  Google Scholar 

  25. Havaei M, Davy A, Warde-Farley D et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  26. Paul AY, Joseph P, Heather CH, Rachel GS, Sean H, James CG, Guido G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  Google Scholar 

  27. Ma C, Luo G, Wang K (2018) Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images. IEEE Trans Med Imaging 37(8):1943–1954

    Article  Google Scholar 

  28. Liu M, Zhang J, Nie D et al (2018) Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J Biomed Health 22(5):1476–1485

    Article  Google Scholar 

  29. El-Dahshan ESA, Mohsen HM, Revett K et al (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41(11):5526–5554

    Article  Google Scholar 

  30. Kanmani P, Marikkannu P (2018) MRI Brain Images Classification: a multi-level threshold based region optimization technique. J Med Syst 42(4):62

    Article  Google Scholar 

  31. Brain Tumor Database (BRAINIX), http://www.osirix-viewer.com/datasets/.

  32. https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM

  33. Scarpace L et al (2016) Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection. Cancer Imaging Arch. https://doi.org/10.7937/K9/TCIA.2016.RNYFUYE9

    Article  Google Scholar 

  34. Clark K et al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057. https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  35. http://www.itksnap.org/pmwiki/pmwiki.php

  36. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  Google Scholar 

  37. Satapathy SC et al (2018) Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput 12:1285–1307. https://doi.org/10.1007/s00521-016-2645-5

    Article  Google Scholar 

  38. Roopini TI, Vasanthi M, Rajinikanth V, Rekha M, Sangeetha M (2018) Segmentation of tumor from brain mri using fuzzy entropy and distance regularised level set. Lect Notes Electr Eng 490:297–304. https://doi.org/10.1007/978-981-10-8354-9_27

    Article  Google Scholar 

  39. Manic KS, Hasoon FA, Shibli NA, Satapathy SC, Rajinikanth V (2019) An approach to examine brain tumor based on Kapur’s entropy and Chan-Vese algorithm. AISC 797:901–909

    Google Scholar 

  40. Revanth K et al (2018) Computational investigation of stroke lesion segmentation from Flair/DW modality MRI. In. Fourth international conference on biosignals, images and instrumentation (ICBSII), IEEE 206–212. https://doi.org/https://doi.org/10.1109/icbsii.2018.8524617.

  41. Rajinikanth V, Raja NSM, Kamalanand K (2017) Firefly algorithm assisted segmentation of tumor from brain MRI using Tsallis function and Markov random field. J Control Eng Appl Inform 19(3):97–106

    Google Scholar 

  42. Bauer S, Wiest R, Nolte LP et al (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97

    Article  Google Scholar 

  43. Amin J, Sharif M, Yasmin M et al (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297

    Article  Google Scholar 

  44. Adapa D, Raj ANJ, Alisetti SN, Zhuang Z, Naik G (2020) A supervised blood vessel segmentation technique for digital fundus images using Zernike Moment based features. PLoS ONE 15(3):e0229831

    Article  Google Scholar 

  45. Zhuang Z, Fan G, Yuan Y, Raj ANJ, Qiu S (2020) A fuzzy clustering based color-coded diagram for effective illustration of blood perfusion parameters in contrast-enhanced ultrasound videos. Comput Methods Prog Biomed. https://doi.org/10.1016/j.cmpb.2019.105233

    Article  Google Scholar 

  46. Noe JRA et al (2019) A multi-sensor system for silkworm cocoon gender classification via image processing and support vector machine. Sensors 19(12):2056. https://doi.org/10.3390/s19122656

    Article  MathSciNet  Google Scholar 

  47. Mirjalili S (2016) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  48. Aziz MAE, Ewees AA, Hassanien AE (2017) Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst Appl 83:242–256. https://doi.org/10.1016/j.eswa.2017.04.023

    Article  Google Scholar 

  49. Jia H, Ma J, Song W (2019) Multilevel thresholding segmentation for color image using modified moth-flame optimization. IEEE Access 7:44097–44134. https://doi.org/10.1109/ACCESS.2019.2908718

    Article  Google Scholar 

  50. Raja NSM et al (2014) Otsu based optimal multilevel image thresholding using firefly algorithm. Model Simul Eng 2014:1–17. https://doi.org/10.1155/2014/794574

    Article  Google Scholar 

  51. Preethi JB, LoongManic LMSK, Suresh U (2015) Multi-level image segmentation of rgb images using otsu and brownian bat algorithm. Adv Nat Appl Sci 9(5):74–81

    Google Scholar 

  52. Manic KS, Al Shibli N, Al Sulaimi R (2018) SGO and Tsallis entropy assisted segmentation of abnormal regions from brain MRI. J Eng Sci Technol 13:52–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajinikanth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to report regarding the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadry, S., Rajinikanth, V., Raja, N.S.M. et al. Evaluation of brain tumor using brain MRI with modified-moth-flame algorithm and Kapur’s thresholding: a study. Evol. Intel. 14, 1053–1063 (2021). https://doi.org/10.1007/s12065-020-00539-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00539-w

Keywords

Navigation