Skip to main content

Advertisement

Log in

A modified unconscious search algorithm for data clustering

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Clustering is a widely used data mining technique with a diverse set of applications. Since clustering is an NP-hard problem, finding high-quality solutions for large-scale clustering problems can be an arduous and computationally expensive task. Therefore, many metaheuristics are utilized to solve these problems efficiently. In this paper, a modified unconscious search (US) and its k-means hybrid for data clustering are proposed with two main modifications: (1) generating initial population by combining solutions of k-means and random solutions, (2) replacing the usual local search step of the original US by an existing Heuristic Search method. Modified US is tested on the seven following well-known benchmarks from the UCI machine learning directory: Iris, Wine, Glass, Cancer, Vowel, CMC, and Ecoli. The results are then compared against metaheuristics, such as genetic algorithm, particle swarm optimization (PSO), black hole algorithm, hybrid of PSO k-means, and accelerated chaotic PSO. The results of experiments show that, on average, the quality of best solutions obtained by the proposed methods on all seven datasets is 0.176% better than the quality of the other six algorithms applied for experimentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://archive.ics.uci.edu/ml/index.php

References

  1. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam

    MATH  Google Scholar 

  2. Chuang LY, Hsiao CJ, Yang CH (2011) Chaotic particle swarm optimization for data clustering. Expert Syst Appl 38(12):14555–14563

    Article  Google Scholar 

  3. Kapoor V, Tak SS, Sharma V (2008) Location selection—a fuzzy clustering approach. Int J Fuzzy Syst 10(2):123–128

  4. Gao S, Wang Y, Cheng J, Inazumi Y, Tang Z (2016) Ant colony optimization with clustering for solving the dynamic location routing problem. Appl Math Comput 285:149–173

    MathSciNet  MATH  Google Scholar 

  5. Chen H, Du B, Huang GQ (2011) Scheduling a batch processing machine with non-identical job sizes: a clustering perspective. Int J Prod Res 49(19):5755–5778

    Article  Google Scholar 

  6. Masoud H, Jalili S (2014) A clustering-based model for class responsibility assignment problem in object-oriented analysis. J Syst Softw 93:110–131

    Article  Google Scholar 

  7. Vivona L, Cascio D, Bruno S, Fauci A, Taormina V, Elgaaied AB, Gorgi Y, Triki RM, Ahmed MB, Yalaoui S (2016) Unsupervised clustering method for pattern recognition in IIF images. In: 2016 international image processing, applications and systems (IPAS). IEEE, pp 1–6

  8. Sharma P, Suji J (2016) A review on image segmentation with its clustering techniques. Int J Signal Process Image Process Pattern Recognit 9(5):209–218

    Google Scholar 

  9. Celebi ME, Wen Q, Hwang S (2015) An effective real-time color quantization method based on divisive hierarchical clustering. J Real-Time Image Proc 10(2):329–344

    Article  Google Scholar 

  10. Gomez-Muñoz VM, Porta-Gándara M (2002) Local wind patterns for modeling renewable energy systems by means of cluster analysis techniques. Renew Energy 25(2):171–182

    Article  Google Scholar 

  11. Nanda SJ, Gulati I, Chauhan R, Modi R, Dhaked U (2019) A K-Means-Galactic swarm optimization-based clustering algorithm with otsu’s entropy for brain tumor detection. Appl Artif Intell 33(2):152–170

    Article  Google Scholar 

  12. D’Urso P, Disegna M, Massari R, Prayag G (2015) Bagged fuzzy clustering for fuzzy data: an application to a tourism market. Knowl-Based Syst 73:335–346

    Article  Google Scholar 

  13. Kuo R, Chiang N, Chen Z-Y (2014) Integration of artificial immune system and K-means algorithm for customer clustering. Appl Artif Intell 28(6):577–596

    Google Scholar 

  14. Charulatha B, Rodrigues P, Chitralekha T, Rajaraman A (2015) Clustering for knowledgeable web mining. In: Suresh LP, Dash SS, Panigrahi BK (eds) Artificial intelligence and evolutionary algorithms in engineering systems. Springer, pp 491–498

  15. Abualigah LM, Khader AT, Hanandeh ES (2018) Hybrid clustering analysis using improved krill herd algorithm. Appl Intell 48:1–25

    Article  Google Scholar 

  16. Welch WJ (1982) Algorithmic complexity: three NP-hard problems in computational statistics. J Stat Comput Simul 15(1):17–25

    Article  MathSciNet  MATH  Google Scholar 

  17. Karthi R, Arumugam S, Kumar KR (2009) Discrete particle swarm optimization algorithm for data clustering. In: Krasnogor N, Melián-Batista MB, Moreno Pérez JA, Moreno-Vega JM, Pelta DA (eds) Nature inspired cooperative strategies for optimization (NICSO 2008). Springer, pp 75–88

  18. Jiang B, Wang N, Wang L (2013) Particle swarm optimization with age-group topology for multimodal functions and data clustering. Commun Nonlinear Sci Numer Simul 18(11):3134–3145

    Article  MathSciNet  MATH  Google Scholar 

  19. Hatamlou A, Hatamlou M (2013) PSOHS: an efficient two-stage approach for data clustering. Memetic Comput 5(2):155–161

    Article  Google Scholar 

  20. Jiang B, Wang N (2014) Cooperative bare-bone particle swarm optimization for data clustering. Soft Comput 18(6):1079–1091

    Article  Google Scholar 

  21. Niu B, Duan Q, Liu J, Tan L, Liu Y (2017) A population-based clustering technique using particle swarm optimization and k-means. Nat Comput 16(1):45–59

    Article  MathSciNet  Google Scholar 

  22. Sharma M, Chhabra JK (2019) An efficient hybrid PSO polygamous crossover based clustering algorithm. Evolut Intell 1–19

  23. Murthy CA, Chowdhury N (1996) In search of optimal clusters using genetic algorithms. Pattern Recogn Lett 17(8):825–832

    Article  Google Scholar 

  24. Liu Y, Liu Y, Wang L, Chen K A hybrid tabu search based clustering algorithm. In: Knowledge-Based Intelligent Information and Engineering Systems, 2005. Springer, pp 168–168

  25. Chang DX, Zhang XD, Zheng CW (2009) A genetic algorithm with gene rearrangement for K-means clustering. Pattern Recogn 42(7):1210–1222

    Article  Google Scholar 

  26. Shelokar P, Jayaraman VK, Kulkarni BD (2004) An ant colony approach for clustering. Anal Chim Acta 509(2):187–195

    Article  Google Scholar 

  27. Fu H A novel clustering algorithm with ant colony optimization. In: Pacific-Asia workshop on computational intelligence and industrial application, PACIIA'08, 2008. IEEE, pp 66–69

  28. Jiang H, Yi S, Li J, Yang F, Hu X (2010) Ant clustering algorithm with K-harmonic means clustering. Expert Syst Appl 37(12):8679–8684

    Article  Google Scholar 

  29. Wan M, Wang C, Li L, Yang Y (2012) Chaotic ant swarm approach for data clustering. Appl Soft Comput 12(8):2387–2393

    Article  Google Scholar 

  30. Mageshkumar C, Karthik S, Arunachalam V (2019) Hybrid metaheuristic algorithm for improving the efficiency of data clustering. Cluster Comput 22(1):435–442

    Article  Google Scholar 

  31. Zou W, Zhu Y, Chen H, Sui X (2010) A clustering approach using cooperative artificial bee colony algorithm. Discrete Dyn Nat Soc 2010:1–16

  32. Karaboga D, Ozturk C (2010) Fuzzy clustering with artificial bee colony algorithm. Sci Res Essays 5(14):1899–1902

    Google Scholar 

  33. Karaboga D, Ozturk C (2011) A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl Soft Comput 11(1):652–657

    Article  Google Scholar 

  34. Yan X, Zhu Y, Zou W, Wang L (2012) A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing 97:241–250

    Article  Google Scholar 

  35. Das P, Das DK, Dey S (2018) A modified bee colony optimization (MBCO) and it’s hybridization with k-means for an application to data clustering. Appl Soft Comput 70:590–603

    Article  Google Scholar 

  36. Zabihi F, Nasiri B (2018) A novel history-driven artificial bee colony algorithm for data clustering. Appl Soft Comput 71:226–241

    Article  Google Scholar 

  37. Saida IB, Nadjet K, Omar B (2014) A new algorithm for data clustering based on cuckoo search optimization. In: Pan JS, Krömer P, Snášel V (eds) Genetic and evolutionary computing. Springer, pp 55–64

  38. Amiri E, Mahmoudi S (2016) Efficient protocol for data clustering by fuzzy Cuckoo optimization algorithm. Appl Soft Comput 41:15–21

    Article  Google Scholar 

  39. Boushaki SI, Kamel N, Bendjeghaba O (2018) A new quantum chaotic cuckoo search algorithm for data clustering. Expert Syst Appl 96:358–372

    Article  MATH  Google Scholar 

  40. Bouyer A, Hatamlou A (2018) An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms. Appl Soft Comput 67:172–182

    Article  Google Scholar 

  41. Hatamlou A, Abdullah S, Hatamlou M (2011) Data clustering using big bang–big crunch algorithm. In: Pichappan P, Ahmadi H, Ariwa E (eds) Innovative comput technol. Springer, pp 383–388

  42. Niknam T, Fard ET, Pourjafarian N, Rousta A (2011) An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering. Eng Appl Artif Intell 24(2):306–317

    Article  Google Scholar 

  43. Abdeyazdan M (2014) Data clustering based on hybrid K-harmonic means and modifier imperialist competitive algorithm. J Supercomput 68(2):574–598

    Article  Google Scholar 

  44. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  45. Krishnasamy G, Kulkarni AJ, Paramesran R (2014) A hybrid approach for data clustering based on modified cohort intelligence and K-means. Expert Syst Appl 41(13):6009–6016

    Article  Google Scholar 

  46. Sahoo AJ, Kumar Y (2014) Modified teacher learning based optimization method for data clustering. In: Thampi SM, Gelbukh A, Mukhopadhyay J (eds) Advances in signal processing and intelligent recognition systems. Springer, pp 429–437

  47. Jensi R, Jiji GW (2015) Hybrid data clustering approach using k-means and flower pollination algorithm. arXiv preprint. arXiv:. 150503236

  48. Kumar Y, Sahoo G (2015) Hybridization of magnetic charge system search and particle swarm optimization for efficient data clustering using neighborhood search strategy. Soft Comput 19(12):3621–3645

    Article  Google Scholar 

  49. Serapião AB, Corrêa GS, Gonçalves FB, Carvalho VO (2016) Combining K-means and K-harmonic with fish school search algorithm for data clustering task on graphics processing units. Appl Soft Comput 41:290–304

    Article  Google Scholar 

  50. Jensi R, Jiji GW (2016) An improved krill herd algorithm with global exploration capability for solving numerical function optimization problems and its application to data clustering. Appl Soft Comput 46:230–245

    Article  Google Scholar 

  51. Dowlatshahi MB, Nezamabadi-pour H (2014) GGSA: a grouping gravitational search algorithm for data clustering. Eng Appl Artif Intell 36:114–121

    Article  Google Scholar 

  52. Han X, Quan L, Xiong X, Almeter M, Xiang J, Lan Y (2017) A novel data clustering algorithm based on modified gravitational search algorithm. Eng Appl Artif Intell 61:1–7

    Article  Google Scholar 

  53. Kumar Y, Singh PK (2017) Improved cat swarm optimization algorithm for solving global optimization problems and its application to clustering. Appl. Intell 48:1–17

    Google Scholar 

  54. Singh H, Kumar Y (2020) A neighborhood search based cat swarm optimization algorithm for clustering problems. Evolut Intell 13:1–17

    Google Scholar 

  55. Tripathi AK, Sharma K, Bala M (2018) A Novel Clustering Method Using Enhanced Grey Wolf Optimizer and MapReduce. Big Data Res 14:93–100

    Article  Google Scholar 

  56. Majhi SK (2019) Fuzzy clustering algorithm based on modified whale optimization algorithm for automobile insurance fraud detection. Evolut Intell: 1–12

  57. Singh H, Kumar Y, Kumar S (2019) A new meta-heuristic algorithm based on chemical reactions for partitional clustering problems. Evol Intel 12(2):241–252

    Article  Google Scholar 

  58. Ardjmand E, Amin-Naseri MR (2012) Unconscious search-a new structured search algorithm for solving continuous engineering optimization problems based on the theory of psychoanalysis. In: Tan Y, Shi Y, Ji Z (eds) International conference in swarm intelligence. Springer, pp 233–242

  59. Ardjmand E, Park N, Weckman G, Amin-Naseri MR (2014) The discrete unconscious search and its application to uncapacitated facility location problem. Comput Ind Eng 73:32–40

    Article  Google Scholar 

  60. Amin-Naseri M, Ardjmand E, Weckman G Training the feedforward neural network using unconscious search. In: The international joint conference on neural networks (IJCNN), 2013. IEEE, pp 1–7

  61. Ardjmand E, Weckman GR, Young WA, Sanei Bajgiran O, Aminipour B (2016) A robust optimisation model for production planning and pricing under demand uncertainty. Int J Prod Res 54(13):3885–3905

    Article  Google Scholar 

  62. Asadi-Zonouz M, Khalili M, Tayebi H (2020) A hybrid unconscious search algorithm for mixed-model assembly line balancing problem with SDST, parallel workstation and learning effect. J Optim Indus Eng 13(2):123–140

    Google Scholar 

  63. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 14. Oakland, CA, USA, pp 281–297

  64. Nanda SJ, Panda GJS (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evolut Comput 16:1–1

    Article  Google Scholar 

  65. Figueiredo E, Macedo M, Siqueira HV, Santana CJ Jr, Gokhale A, Bastos-Filho CJA (2019) Swarm intelligence for clustering—a systematic review with new perspectives on data mining. Eng Appl Artif Intell 82:313–329

    Article  Google Scholar 

  66. Kennedy J, Eberhart R Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks. IEEE, pp 1942–1948

  67. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department

  68. Xu R, Wunsch D (2008) Clustering, illustrated. Wiley-IEEE Press, Hoboken

    Book  Google Scholar 

  69. Gan G, Ma C, Wu J (2020) Data clustering: theory, algorithms, and applications. SIAM, Philadelphia

    MATH  Google Scholar 

  70. Mijolla AdE (2005) International dictionary of psychoanalysis, vol 2. Macmillan, New York

    Google Scholar 

  71. Assoun P-L (2002) Le vocabulaire de Freud. Ellipses, Queens

    Google Scholar 

  72. Agustı L, Salcedo-Sanz S, Jiménez-Fernández S, Carro-Calvo L, Del Ser J, Portilla-Figueras JA (2012) A new grouping genetic algorithm for clustering problems. Expert Syst Appl 39(10):9695–9703

    Article  Google Scholar 

  73. Gan C, Cao W, Wu M, Chen X (2018) A new bat algorithm based on iterative local search and stochastic inertia weight. Expert Syst Appl 104:202–212

    Article  Google Scholar 

  74. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18

    Article  Google Scholar 

  75. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recogn 33(9):1455–1465

    Article  Google Scholar 

  76. Van der Merwe D (2003) Engelbrecht AP data clustering using particle swarm optimization. In: Congress on evolutionary computation, CEC'03. IEEE, pp 215–220

  77. Holland BS, Copenhaver MD (1987) An improved sequentially rejective Bonferroni test procedure. Biometrics 43:417–423

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Ardjmand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi-Zonouz, M., Amin-Naseri, M.R. & Ardjmand, E. A modified unconscious search algorithm for data clustering. Evol. Intel. 15, 1667–1693 (2022). https://doi.org/10.1007/s12065-021-00578-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00578-x

Keywords

Navigation