Skip to main content

Advertisement

Log in

Automated classification of retinal images into AMD/non-AMD Class—a study using multi-threshold and Gassian-filter enhanced images

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Eye is an essential sensory organ in human physiological system and disease in eye severely affects the vision system. Age-related-macular-degeneration (AMD) is a common eye disease in elderly people (age > 60 years) and the untreated AMD will cause severe eye illness including permanent vision loss. This research work proposes a machine-learning-system (MLS) to detect the AMD using the fundus-retinal-images. The various phases of the MLS employed in the proposed work is as follows; (i) Image thresholding based on Shannon’ Entropy and Bat Algorithm (BA + SE), (ii) Gaussian-filter (GF) based image smoothening, (iii) feature extraction, (iv) Feature selection using statistical test, and (v) classifier implementation and validation. The image features, such as the gray level co-occurrence matrix and entropies are considered to categorize the retinal image database into AMD/Non-AMD class. The performance of classifiers, such as Naïve–Bayes (NB), decision-tree (DT), K-nearest neighbors, random-forest (RF) and support-vector-machine with linear kernel (SVM) are compared and the experimental outcome confirms that, the classification accuracy of SVM is superior (> 93%) compared to other classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. https://www.who.int/blindness/causes/priority/en/index7.html

  2. Pead E et al (2019) Automated detection of age-related macular degeneration in color fundus photography: a systematic review. Surv Ophthalmol 64(4):498–511. https://doi.org/10.1016/j.survophthal.2019.02.003

    Article  Google Scholar 

  3. Bressler NM, Bressler SB, Fine SL (1988) Age-related macular degeneration. Surv Ophthalmol 32(6):375–413. https://doi.org/10.1016/0039-6257(88)90052-5

    Article  Google Scholar 

  4. Ambati J, Fowler BJ (2012) Mechanisms of Age-Related Macular Degeneration. Neuron 75(1):26–39. https://doi.org/10.1016/j.neuron.2012.06.018

    Article  Google Scholar 

  5. https://www.mayoclinic.org/diseases-conditions/dry-macular-degeneration/diagnosis-treatment/drc-20350381

  6. Koh JEW, Ng EYK, Bhandary SV et al (2018) Automated detection of retinal health using PHOG and SURF features extracted from fundus images. Appl Intell 48:1379–1393. https://doi.org/10.1007/s10489-017-1048-3

    Article  Google Scholar 

  7. Acharya UR, Mookiah MRK, Koh JEW, Tan JH, Noronha K, Bhandary SV, Rao AK, Hagiwara Y, Chua KC, Laude A (2016) Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features. Comput Biol Med 73:131–140

    Article  Google Scholar 

  8. Mookiah MRK, Acharya UR, Martis RJ, Chua KC, Lim CM, Ng EYK, Laude A (2013) Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading. A hybrid feature extraction approach. Knowl-Based Syst 39:9–22

    Article  Google Scholar 

  9. Mookiah MRK, Acharya UR, Fujita H, Koh JEW, Tan JH, Noronha K, Bhandary SV, Chua KC, Lim CM, Laude A, Tong L (2015) Local configuration pattern features for age-related macular degeneration characterization and classification. Comput Biol Med 63:208–218

    Article  Google Scholar 

  10. Wintergerst MWM, Schultz T, Birtel J et al (2017) Algorithms for the automated analysis of age-related macular degeneration biomarkers on optical coherence tomography: a systematic review. Transl Vis Sci Technol 6:10

    Article  Google Scholar 

  11. Grassmann F et al (2018) A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 125(9):1410–1420. https://doi.org/10.1016/j.ophtha.2018.02.037

    Article  Google Scholar 

  12. https://www.dropbox.com/s/mdx13ya26ut2msx/iChallenge-AMD-Training400.zip?dl=0

  13. https://refuge.grand-challenge.org/iChallenge-AMD/

  14. Yang XS (2013) Bat algorithm: literature review and applications. Int J Bio-Inspired Comput 5(3):141–149

    Article  Google Scholar 

  15. Yang XS (2008) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, Frome

    Google Scholar 

  16. Satapathy SC, Raja NS, Rajinikanth V et al (2018) Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput Appl 29:285–1307. https://doi.org/10.1007/s00521-016-2645-5

    Article  Google Scholar 

  17. Rajinikanth V et al (2019) Skin melanoma assessment using Kapur’s entropy and level set—a study with bat algorithm. Smart Innov, Syst Technol 104:193–202. https://doi.org/10.1007/978-981-13-1921-1_19

    Article  Google Scholar 

  18. Dey N, Rajinikanth V (2021) Applications of bat algorithm and its variants. https://doi.org/10.1007/978-981-15-5097-3

  19. Kannappan PL (1972) On Shannon’s entropy directed divergence and inaccuracy. Probab Theory Rel Fields 22:95–100

    MathSciNet  MATH  Google Scholar 

  20. Thanaraj RIR et al (2020) Appraisal of breast ultrasound image using Shannon’s thresholding and level-set segmentation. Adv Intell Syst Comput 1119:621–630. https://doi.org/10.1007/978-981-15-2414-1_62

    Article  Google Scholar 

  21. Basu M (2002) Gaussian-based edge-detection methods-a survey. IEEE Trans Syst, Man, Cybern, Part C: Appl Rev. https://doi.org/10.1109/TSMCC.2002.804448

  22. Marr D, Hildreth E (1980) Theory of edge detection. Proc. R Soc. Lond. A, Math. Phys. Sci., B 207:187–217

    Google Scholar 

  23. Bhandary A et al (2020) Deep-learning framework to detect lung abnormality—a study with chest X-ray and lung CT scan images. Pattern Recogn Lett 129:271–278. https://doi.org/10.1016/j.patrec.2019.11.013

    Article  Google Scholar 

  24. Fernandes SL et al (2019) A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consum Electron Mag 8(5):31–36. https://doi.org/10.1109/MCE.2019.2923926

    Article  Google Scholar 

  25. Jahmunah V et al (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698. https://doi.org/10.1016/j.artmed.2019.07.006

    Article  Google Scholar 

  26. Acharya UR et al (2019) Automated detection of Alzheimer’s disease using brain MRI images—a study with various feature extraction techniques. J Med Syst 43:302. https://doi.org/10.1007/s10916-019-1428-9

    Article  Google Scholar 

  27. Dey N et al (2019) Social-group-optimization based tumor evaluation tool for clinical brain MRI of flair/diffusion-weighted modality. Biocybern Biomed Eng 39(3):843–856. https://doi.org/10.1016/j.bbe.2019.07.005

    Article  Google Scholar 

  28. Arunkumar N, Ramkumar K, Venkatraman V, Abdulhay E, Fernandes SL, Kadry S, Segal S (2017) Classification of focal and non focal EEG using entropies. Pattern Recogn Lett 94:112–117

    Article  Google Scholar 

  29. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol—Heart Circu Physiol 278(6):2039–2049

    Article  Google Scholar 

  30. Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JEW (2015) Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl-Based Syst 88:85–96

    Article  Google Scholar 

  31. Khan MA, Ashraf I, Alhaisoni M, Damaševičius R, Scherer R, Rehman A, Bukhari SAC (2020) Multimodal brain tumor classification using deep learning and robust feature selection: a machine learning application for radiologists. Diagnostics 10(8):565

    Article  Google Scholar 

  32. Khan MA, Kadry S, Alhaisoni M, Nam Y, Zhang Y, Rajinikanth V, Sarfraz MS (2020) Computer-aided gastrointestinal diseases analysis from wireless capsule endoscopy: a framework of best features selection. IEEE Access 8:132850–132859

    Article  Google Scholar 

  33. Tripathy RK, Acharya UR (2018) Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework. Biocybern Biomed Eng 38(4):890–902

    Article  Google Scholar 

  34. Gupta V, Priya T, Yadav AK, Pachori RB, Acharya UR (2017) Automated detection of focal EEG signals using features extracted from flexible analytic wavelet transform. Pattern Recogn Lett 94:180–188

    Article  Google Scholar 

  35. Zahoor S, Lali IU, Khan MA, Javed K, Mehmood W (2020) Breast cancer detection and classification using traditional computer vision techniques: a comprehensive review. Curr Med Imaging 16(10):1187–1200. https://doi.org/10.2174/1573405616666200406110547

    Article  Google Scholar 

  36. Majid A, Khan MA, Yasmin M, Rehman A, Yousafzai A, Tariq U (2020) Classification of stomach infections: a paradigm of convolutional neural network along with classical features fusion and selection. Microsc Res Tech 83(5):562–576

    Article  Google Scholar 

  37. Rehman A, Khan MA, Mehmood Z, Saba T, Sardaraz M, Rashid M (2020) Microscopic melanoma detection and classification: a framework of pixel-based fusion and multilevel features reduction. Microsc Res Tech 83(4):410–423

    Article  Google Scholar 

  38. Khan MA, Khan MA, Ahmed F, Mittal M, Goyal LM, Hemanth DJ, Satapathy SC (2020) Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recogn Lett 131:193–204

    Article  Google Scholar 

  39. Khan MA, Sharif M, Akram T, Bukhari SAC, Nayak RS (2020) Developed Newton–Raphson based deep features selection framework for skin lesion recognition. Pattern Recogn Lett 129:293–303

    Article  Google Scholar 

  40. Sharif MI, Li JP, Khan MA, Saleem MA (2020) Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images. Pattern Recogn Lett 129:181–189

    Article  Google Scholar 

  41. Khan MA, Rubab S, Kashif A, Sharif MI, Muhammad N, Shah JH et al (2020) Lungs cancer classification from CT images: an integrated design of contrast based classical features fusion and selection. Pattern Recogn Lett 129:77–85

    Article  Google Scholar 

  42. Lakshmi B, Parthasarathy S (2019) Human action recognition using median background and max pool convolution with nearest neighbor. Int J Ambient Comput Intell 10(2):34–47

    Article  Google Scholar 

  43. Ali MNY, Sarowar MG, Rahman ML, Chaki J, Dey N, Tavares JMR (2019) Adam deep learning with SOM for human sentiment classification. Int J Ambient Comput Intell 10(3):92–116

    Article  Google Scholar 

  44. Awad M, Khanna R (2015) Support vector machines for classification. In: Efficient learning machines. A press, Berkeley. https://doi.org/10.1007/978-1-4302-5990-9_3

  45. Nalepa J, Kawulok M (2019) (2019) Selecting training sets for support vector machines: a review. Artif Intell Rev 52:857–900. https://doi.org/10.1007/s10462-017-9611-1

    Article  Google Scholar 

  46. Ward MO (2008) Multivariate data glyphs: principles and practice. Handb Data Vis. https://doi.org/10.1007/978-3-540-33037-0_8

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Gia Nhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajinikanth, V., Sivakumar, R., Hemanth, D.J. et al. Automated classification of retinal images into AMD/non-AMD Class—a study using multi-threshold and Gassian-filter enhanced images. Evol. Intel. 14, 1163–1171 (2021). https://doi.org/10.1007/s12065-021-00581-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00581-2

Keywords

Navigation