Skip to main content
Log in

Hyperspectral image classification using support vector machine: a spectral spatial feature based approach

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Recently spectral–spatial information based algorithms are gaining more attention because of its robustness, accuracy and efficiency. In this paper, an SVM based classification method has been proposed which extracts features considering both spectral and spatial information. The proposed method exploits SVM to encode spectral–spatial information of pixel and also used for classification task. A clean comparison of relative gain achieved with inclusion of spatial features with its spectral counterpart is also investigated. The experiment has been performed using three benchmark datasets Indian Pines, Pavia University and Salinas. Experiments show that the proposed method outperforms the classification algorithms K nearest neighbors, linear discriminant analysis, Naive Bayes and decision tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bandos TV, Bruzzone L, Camps-Valls G (2009) Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans Geosci Remote Sens 47(3):862–873. https://doi.org/10.1109/TGRS.2008.2005729

    Article  Google Scholar 

  2. Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491

    Article  Google Scholar 

  3. Bischof H, Leonardis A (1998) Finding optimal neural networks for land use classification. IEEE Trans Geosci Remote Sens 36(1):337–341

    Article  Google Scholar 

  4. Bruzzone L, Cossu R (2002) A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps. IEEE Trans Geosci Remote Sens 40(9):1984–1996. https://doi.org/10.1109/TGRS.2002.803794

    Article  MATH  Google Scholar 

  5. Bruzzone L, Prieto DF (1999) A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. IEEE Trans Geosci Remote Sens 37(2):1179–1184. https://doi.org/10.1109/36.752239

    Article  Google Scholar 

  6. Camps-Valls G, Bruzzone L (2005) Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 43(6):1351–1362. https://doi.org/10.1109/TGRS.2005.846154

    Article  Google Scholar 

  7. Camps-Valls G, Gomez-Chova L, Calpe-Maravilla J, Martin-Guerrero JD, Soria-Olivas E, Alonso-Chorda L, Moreno J (2004) Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Trans Geosci Remote Sens 42(7):1530–1542. https://doi.org/10.1109/TGRS.2004.827262

    Article  Google Scholar 

  8. Camps-Valls G, Gomez-Chova L, Munoz-Mari J, Vila-Frances J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97. https://doi.org/10.1109/LGRS.2005.857031

    Article  Google Scholar 

  9. Chutia D, Bhattacharyya DK, Sarma KK, Kalita R, Sudhakar S (2015) Hyperspectral remote sensing classifications: a perspective survey. Trans GIS. https://doi.org/10.1111/tgis.12164

    Article  Google Scholar 

  10. Civco DL (1993) Artificial neural networks for land-cover classification and mapping. Int J Geogr Inf Syst 7(2):173–186. https://doi.org/10.1080/02693799308901949

    Article  Google Scholar 

  11. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  12. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46. https://doi.org/10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  13. Dong P, Liu J (2012) Hyperspectral image classification using support vector machines with an efficient principal component analysis scheme. In: Wang Y, Li T (eds) Foundations of intelligent systems. Springer, Berlin, pp 131–140

    Google Scholar 

  14. Franchi G, Angulo J, Sejdinovi D (2016) Hyperspectral image classification with support vector machines on kernel distribution embeddings. In: 2016 IEEE International conference on image processing (ICIP), pp 1898–1902

  15. Gualtieri JA, Cromp RF (1999) Support vector machines for hyperspectral remote sensing classification. In: Mericsko RJ (ed) 27th AIPR workshop: advances in computer-assisted recognition, vol 3584. International Society for Optics and Photonics, SPIE, pp 221–232. https://doi.org/10.1117/12.339824

  16. Guo Y, Yin X, Zhao X, Yang D, Bai Y (2019) Hyperspectral image classification with svm and guided filter. EURASIP J Wirel Commun Netw 2019(1):56. https://doi.org/10.1186/s13638-019-1346-z

    Article  Google Scholar 

  17. Huang C, Davis LS, Townshend JRG (2002) An assessment of support vector machines for land cover classification. Int J Remote Sens 23(4):725–749. https://doi.org/10.1080/01431160110040323

    Article  Google Scholar 

  18. Kale KV, Solankar MM, Nalawade DB, Dhumal RK, Gite HR (2017) A research review on hyperspectral data processing and analysis algorithms. Proc Natl Acad Sci India Sect A Phys Sci 87(4):541–555. https://doi.org/10.1007/s40010-017-0433-y

    Article  Google Scholar 

  19. Licciardi G, Marpu PR, Chanussot J, Benediktsson JA (2012) Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci Remote Sens Lett 9(3):447–451. https://doi.org/10.1109/LGRS.2011.2172185

    Article  Google Scholar 

  20. Lokman G, Ylmaz G (2015) Hyperspectral image classification using support vector neural network algorithm. In: 2015 7th International conference on recent advances in space technologies (RAST), pp 239–243

  21. Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870. https://doi.org/10.1080/01431160600746456

    Article  Google Scholar 

  22. Ludwig O, Nunes U, Araújo R (2014) Eigenvalue decay: a new method for neural network regularization. Neurocomputing 124:33–42

    Article  Google Scholar 

  23. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790. https://doi.org/10.1109/TGRS.2004.831865

    Article  Google Scholar 

  24. Mercier G, Lennon, M (2003) Support vector machines for hyperspectral image classification with spectral-based kernels. In: IGARSS 2003. 2003 IEEE International geoscience and remote sensing symposium. Proceedings (IEEE Cat. No.03CH37477), vol 1, pp 288–290

  25. Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q (2011) Per-pixel versus object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens Environ 115(5):1145–1161. https://doi.org/10.1016/j.rse.2010.12.017

    Article  Google Scholar 

  26. Pathak DK, Kalita SK (2019) Spectral spatial feature based classification of hyperspectral image using support vector machine. In: 2019 6th International conference on signal processing and integrated networks (SPIN), pp 430–435

  27. Santos AB, de Albuquerque Arajo A, Schwartz WR, Menotti D (2015) Hyperspectral image interpretation based on partial least squares. In: 2015 IEEE International conference on image processing (ICIP), pp 1885–1889

  28. Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

    Google Scholar 

  29. Toksz MA, Ulusoy I (2017) Hyperspectral image classification via kernel basic thresholding classifier. IEEE Trans Geosci Remote Sens 55(2):715–728

    Article  Google Scholar 

  30. Tuia D, Ratle F, Pozdnoukhov A, Camps-Valls G (2010) Multisource composite kernels for urban-image classification. IEEE Geosci Remote Sens Lett 7(1):88–92

    Article  Google Scholar 

  31. Vapnik VN (1998) Statistical learning theory. Wiley-Interscience, New York

    MATH  Google Scholar 

  32. Villa A, Benediktsson JA, Chanussot J, Jutten C (2011) Hyperspectral image classification with independent component discriminant analysis. IEEE Trans Geosci Remote Sens 49(12):4865–4876. https://doi.org/10.1109/TGRS.2011.2153861

    Article  Google Scholar 

  33. Xu D, Ni G, Jiang L, Shen YT, Li T, Ge SL, Shu X (2008) Exploring for natural gas using reflectance spectra of surface soils. Adv Space Res 41:1800–1817. https://doi.org/10.1016/j.asr.2007.05.073

    Article  Google Scholar 

  34. Yang H (1999) A back-propagation neural network for mineralogical mapping from aviris data. Int J Remote Sens 20(1):97–110. https://doi.org/10.1080/014311699213622

    Article  Google Scholar 

  35. Yu H, Gao L, Li J, Li S, Zhang B, Benediktsson J (2016) Spectral–spatial hyperspectral image classification using subspace-based support vector machines and adaptive markov random fields. Remote Sens 8(4):355. https://doi.org/10.3390/rs8040355

    Article  Google Scholar 

  36. Yu S, Jia S, Xu C (2017) Convolutional neural networks for hyperspectral image classification. Neurocomputing 219(C):88–98. https://doi.org/10.1016/j.neucom.2016.09.010

    Article  Google Scholar 

Download references

Acknowledgements

The work is performed under the Visvesvaraya Ph.D. Fellowship Grant of Ministry of Electronics and Information Technology (Meity), India. The authors acknowledge the support of Meity for facilitating the work. The authors also acknowledge the anonymous reviewer for their valueable suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diganta Kumar Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, D.K., Kalita, S.K. & Bhattacharya, D.K. Hyperspectral image classification using support vector machine: a spectral spatial feature based approach. Evol. Intel. 15, 1809–1823 (2022). https://doi.org/10.1007/s12065-021-00591-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00591-0

Keywords

Navigation