Skip to main content
Log in

Dynamic crow search algorithm based on adaptive parameters for large-scale global optimization

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Despite the good performance of Crow Search Algorithm (CSA) in dealing with global optimization problems, unfortunately it is not the case with respect to the convergence performance. Conventional CSA exploration and exploitation are strongly dependent on the proper setting of awareness probability (AP) and flight length (FL) parameters. In each optimization problem, AP and FL parameters are set in an ad hoc manner and their values do not change over the optimization process. To this date, there is no analytical approach to adjust their best values. This presents a major drawback to apply CSA in complex practical problems. Hence, the conventional CSA is used only for limited problems due to fact that CSA with fixed AP and FL is frequently trapped into local optimum. In this present paper, an enhanced version of CSA called dynamic crow search algorithm (DCSA) is proposed to overcome the drawbacks of the conventional CSA. In the proposed DCSA, two modifications of the basic algorithm are made. The first modification concerns the continuous adjustment of the CSA parameters leading to a DCSA, where AP will be adjusting linearly over optimization process and FL will be adjusting according to the generalized Pareto probability density function. This dynamic adjustment will provide more global search capability as well as more exploitation of the pre-final solutions. The second modification concerns the improvement of CSA’s swarm diversity in the search process. This will lead to a high convergence accuracy, and fast convergence rate. The effectiveness of the proposed algorithm is validated using a set of experimental series using 13 complex benchmark functions. Experimental results highly proved the modified algorithm effectiveness compared to the basic algorithm in terms of convergence rate, global search capability and final solutions. In addition, a comparison with conventional and recent similar algorithms revealed that DCSA gives superior results in terms of performance and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mansour IB, I. Alaya, and M. Tagina, “A gradual weight-based ant colony approach for solving the multiobjective multidimensional knapsack problem” Evol Intel, vol. 12, 253–2722019

    Article  Google Scholar 

  2. Wang L, J. Pei, Wen Y, J. Pi, Fei M, and Pardalos PM, An improved adaptive human learning algorithm for engineering optimization Appl Soft Comput, vol. 71, 894–9042018

    Article  Google Scholar 

  3. Chen K, F. Zhou, Wang Y, and Yin L, An ameliorated particle swarm optimizer for solving numerical optimization problems Appl Soft Comput, vol. 73, 482–4962018

    Article  Google Scholar 

  4. Singh PR, M. A. Elaziz, and S. Xiong, “Modified Spider Monkey Optimization based on Nelder–Mead method for global optimization” Expert Syst Appl, vol. 110, 264–2892018

    Article  Google Scholar 

  5. Ewees AA, M. Abd Elaziz, and E. H. Houssein, “Improved grasshopper optimization algorithm using opposition-based learning,“ Expert Syst Appl, vol. 112, 156–1722018

    Article  Google Scholar 

  6. Mansour IB, Alaya I (2015) Indicator based ant colony optimization for multi-objective knapsack problem. Procedia Comput Sci vol. 60:448–457

    Article  Google Scholar 

  7. Mansour IB, M. Basseur, and F. Saubion, “A multi-population algorithm for multi-objective knapsack problem” Appl Soft Comput, vol. 70, 814–8252018

    Article  Google Scholar 

  8. Shi H, S. Liu, Wu H, R. Li, Liu S, N. Kwok, and Y. Peng, “Oscillatory Particle Swarm Optimizer” Appl Soft Comput, vol. 73, 316–3272018

    Article  Google Scholar 

  9. Omran MGH, S. Alsharhan, and M. Clerc, “A modified Intellects-Masses Optimizer for solving real-world optimization problems” Swarm Evolutionary Computation, vol. 41, 159–1662018

    Article  Google Scholar 

  10. Sun Y, X. Wang, Chen Y, and Liu Z, “A modified whale optimization algorithm for large-scale global optimization problems” Expert Syst Appl, vol. 114, 563–5772018

    Article  Google Scholar 

  11. Shaw B, V. Mukherjee, and S. P. Ghoshal, “A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems” Int J Electric Power Energy Syst, vol. 35, 21–332012

    Article  Google Scholar 

  12. Nenavath H, D. R. Kumar Jatoth, and D. S. Das, “A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking” Swarm Evolut Comput, vol. 43, 1–302018

    Article  Google Scholar 

  13. Mansour IB, I. Alaya, and M. Tagina, “Chebyshev-based iterated local search for multi-objective optimization,“ in 2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), 2017, pp. 163–170.

  14. Ben Mansour I, I. Alaya, and M. Tagina, “A min-max Tchebycheff based local search approach for MOMKP,“ in Proceedings of the 12th International Conference on Software Technologies, ICSOFT, INSTICC, pp. 140–150.

  15. Torabi S, Safi-Esfahani F (2018) “Improved Raven Roosting Optimization algorithm (IRRO)”. Swarm Evolut Comput vol. 40:144–154

    Article  Google Scholar 

  16. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press

  17. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim vol. 11:341–359

    Article  MathSciNet  Google Scholar 

  18. Atashpaz-Gargari E, Lucas C, “Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition,“ in Evolutionary computation, 2007. CEC 2007. IEEE Congress on, 2007, pp. 4661–4667.

  19. Rajabioun R (2011) “Cuckoo Optimization Algorithm”. Appl Soft Comput vol. 11:5508–5518

    Article  Google Scholar 

  20. Geem ZW, J. H. Kim, and G. V. Loganathan, “A new heuristic optimization algorithm: harmony search,“ simulation, vol. 76, pp. 60–68, 2001

  21. Rashedi E, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,“ Information Sciences, vol. 179, pp. 2232–2248, 2009

  22. Javidy B, A. Hatamlou, and S. Mirjalili, Ions motion algorithm for solving optimization problems Appl Soft Comput, vol. 32, 72–792015

    Article  Google Scholar 

  23. Mirjalili S (2016) “SCA: A Sine Cosine Algorithm for solving optimization problems”. Knowl-Based Syst vol. 96:120–133

    Article  Google Scholar 

  24. Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl Soft Comput vol. 19:177–187

    Article  Google Scholar 

  25. Rao RV, V. J. Savsani, and D. P. Vakharia, Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems Comput Aided Des, vol. 43, 303–3152011

    Article  Google Scholar 

  26. Sadollah A, A. Bahreininejad, Eskandar H, and Hamdi M, Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems Appl Soft Comput, vol. 13, 2592–26122013

    Article  Google Scholar 

  27. Moosavian N, Roodsari BK (2014) Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm Evolut Comput vol. 17:14–24

    Article  Google Scholar 

  28. Mirjalili S, S. M. Mirjalili, and A. Hatamlou, “Multi-Verse Optimizer: a nature-inspired algorithm for global optimization” Neural Comput Appl, vol. 27, 495–5132015

    Article  Google Scholar 

  29. Eberhart R, Kennedy J, “A new optimizer using particle swarm theory,“ in Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on, 1995, pp. 39–43.

  30. Askarzadeh A (2016) “A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm”. Comput Struct vol. 169:1–12

    Article  Google Scholar 

  31. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput vol. 23:715–734

    Article  Google Scholar 

  32. Mirjalili S, A. H. Gandomi, Mirjalili SZ, S. Saremi, Faris H, and Mirjalili SM, “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems” Adv Eng Softw, vol. 114, 163–1912017

    Article  Google Scholar 

  33. Mirjalili S, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer” Adv Eng Softw, vol. 69, 46–612014

    Article  Google Scholar 

  34. Mirjalili S, Lewis A (2016) The Whale Optimization Algorithm. Adv Eng Softw vol. 95:51–67

    Article  Google Scholar 

  35. Mirjalili S (2015) “The Ant Lion Optimizer”. Adv Eng Softw vol. 83:80–98

    Article  Google Scholar 

  36. Dorigo M, Di Caro G, “Ant colony optimization: a new meta-heuristic,“ in Proceedings of the (1999) congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), 1999, pp. 1470–1477.

  37. Karaboga D, Basturk B (2007) “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm”. J Global Optim vol. 39:459–471

    Article  MathSciNet  Google Scholar 

  38. Yang X-S (2010) “A new metaheuristic bat-inspired algorithm”. In: in Nature inspired cooperative strategies for optimization (NICSO 2010). ed: Springer, pp 65–74

  39. Mirjalili S (2015) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl vol. 27:1053–1073

    Article  Google Scholar 

  40. Saremi S, S. Mirjalili, and A. Lewis, “Grasshopper Optimisation Algorithm: Theory and application” Adv Eng Softw, vol. 105, 30–472017

    Article  Google Scholar 

  41. Mirjalili S (2015) “Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm”. Knowl-Based Syst vol. 89:228–249

    Article  Google Scholar 

  42. Meng X, Y. Liu, Gao X, and Zhang H, “A new bio-inspired algorithm: chicken swarm optimization,“ in International conference in swarm intelligence, 2014, pp. 86–94.

  43. Satpathy A, S. K. Addya, Turuk AK, B. Majhi, and G. Sahoo, Crow search based virtual machine placement strategy in cloud data centers with live migration Comput Electric Engi, vol. 69, 334–3502018

    Article  Google Scholar 

  44. Aleem SHA, A. F. Zobaa, and M. E. Balci, Optimal resonance-free third-order high-pass filters based on minimization of the total cost of the filters using Crow Search Algorithm Electr Power Syst Res, vol. 151, 381–3942017

    Article  Google Scholar 

  45. Oliva D, S. Hinojosa, Cuevas E, G. Pajares, Avalos O, and Gálvez J, Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm Expert Syst Appl, vol. 79, 164–1802017

    Article  Google Scholar 

  46. Abdelaziz AY, Fathy A (2017) A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks. Eng Sci Technol Int J vol. 20:391–402

    Article  Google Scholar 

  47. Choudhary G, N. Singhal, and K. Sajan, “Optimal placement of STATCOM for improving voltage profile and reducing losses using crow search algorithm,“ in Control, Computing, Communication and Materials (ICCCCM), 2016 International Conference on, 2016, pp. 1–6.

  48. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE transactions on evolutionary computation vol. 1:67–82

    Article  Google Scholar 

  49. Gupta D, J. J. Rodrigues, Sundaram S, A. Khanna, Korotaev V, and de Albuquerque VHC, “Usability feature extraction using modified crow search algorithm: a novel approach” Neural Computi Appl, pp. 1–11, 2018

  50. Mohammadi F, Abdi H (2018) “A modified crow search algorithm (MCSA) for solving economic load dispatch problem”. Appl Soft Comput vol. 71:51–65

    Article  Google Scholar 

  51. Sayed GI, A. E. Hassanien, and A. T. Azar, Feature selection via a novel chaotic crow search algorithm Neural Comput Appl, vol. 31, 171–1882019

    Article  Google Scholar 

  52. Hassanien AE, R. M. Rizk-Allah, and M. Elhoseny, “A hybrid crow search algorithm based on rough searching scheme for solving engineering optimization problems” J Ambient Intelli Human Comput, pp. 1–25, 2018

  53. Luo J, Shi B (2019) A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems. Appl Intell vol. 49:1982–2000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelouahab Necira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Necira, A., Naimi, D., Salhi, A. et al. Dynamic crow search algorithm based on adaptive parameters for large-scale global optimization. Evol. Intel. 15, 2153–2169 (2022). https://doi.org/10.1007/s12065-021-00628-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00628-4

Keywords

Navigation