Skip to main content
Log in

Local neighbour spider monkey optimization algorithm for data clustering

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Data clustering plays a crucial role in the analysis of information collected from a variety of domains. Researchers developed many classical and mathematical algorithms to solve real-life problems, but due to the inherent property of these algorithms, they prematurely converge and fall to local optima. A further pattern of data in terms of shape, size, and distribution has a significant effect on the exploitation and exploration characteristic of algorithms which draw attention to many researchers. This work attempts to solve this problem by proposing an LNSMO local neighbour spider monkey optimization algorithm for data clustering. In the proposed algorithm Local Leader Phase of the spider monkey optimization algorithm is improved with its neighbour solution. Further to enhance the global search global leader phase of spider monkey optimization is improved with a chaotic operator. The performance of LNSMO is compared with eleven real-life datasets with five well-known Meta-heuristic algorithms in terms of a sum of within-cluster distance and convergence speed. It is further compared with recently developed hybrid meta-heuristic algorithms. Experimental result demonstrates that the proposed algorithm provides a better result in terms of Accuracy, F-measure, and SWCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Shabanzadeh P, Yusof R (2015) An efficient optimization method for solving unsupervised data classification problems. Comput Math Methods Med 2015:802754. https://doi.org/10.1155/2015/802754

    Article  MATH  Google Scholar 

  2. Kao Y-T, Zahara E, Kao I-W (2008) A hybridized approach to data clustering. Expert Syst Appl 34:1754–1762. https://doi.org/10.1016/j.eswa.2007.01.028

    Article  Google Scholar 

  3. Sloss AN, Gustafson S (2020) 2019 Evolutionary algorithms review. In: Banzhaf W, Goodman E, Sheneman L et al (eds) Genetic programming theory and practice XVII. Springer International Publishing, Cham, pp 307–344

    Chapter  Google Scholar 

  4. Zhang Y, Agarwal P, Bhatnagar V et al (2013) Swarm intelligence and its applications. Sci World J 2013:528069. https://doi.org/10.1155/2013/528069

    Article  Google Scholar 

  5. Sharma M, Chhabra JK (2019) An efficient hybrid PSO polygamous crossover based clustering algorithm. Evol Intell. https://doi.org/10.1007/s12065-019-00235-4

    Article  Google Scholar 

  6. University of california irvine, ucirvine machine learning repository, http://archive.ics.uci.edu/ml/index.php

  7. Alswaitti M, Albughdadi M, Isa NAM (2019) Variance-based differential evolution algorithm with an optional crossover for data clustering. Appl Soft Comput 80:1–17. https://doi.org/10.1016/j.asoc.2019.03.013

    Article  Google Scholar 

  8. Mustafa HMJ, Ayob M, Nazri MZA, Kendall G (2019) An improved adaptive memetic differential evolution optimization algorithms for data clustering problems. PLoS ONE 14:1–28. https://doi.org/10.1371/journal.pone.0216906

    Article  Google Scholar 

  9. Gao H, Li Y, Kabalyants P et al (2020) A novel hybrid PSO-K-means clustering algorithm using Gaussian estimation of distribution method and Lévy flight. IEEE Access 8:122848–122863. https://doi.org/10.1109/ACCESS.2020.3007498

    Article  Google Scholar 

  10. Nasiri J, Khiyabani FM (2018) A whale optimization algorithm (WOA) approach for clustering. Cogent Math Stat 5:1483565. https://doi.org/10.1080/25742558.2018.1483565

    Article  MATH  Google Scholar 

  11. Das P, Das DK, Dey S (2018) A modified bee colony optimization (MBCO) and its hybridization with k-means for an application to data clustering. Appl Soft Comput 70:590–603. https://doi.org/10.1016/j.asoc.2018.05.045

    Article  Google Scholar 

  12. Du Z, Han D, Li K-C (2019) Improving the performance of feature selection and data clustering with novel global search and elite-guided artificial bee colony algorithm. J Supercomput 75:5189–5226. https://doi.org/10.1007/s11227-019-02786-w

    Article  Google Scholar 

  13. Das S, Abraham A, Konar A (2008) Automatic clustering using an improved differential evolution algorithm. IEEE Trans Syst Man, Cybern - Part A Syst Humans 38:218–237

    Article  Google Scholar 

  14. Bouyer A, Hatamlou A (2018) An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms. Appl Soft Comput 67:172–182. https://doi.org/10.1016/j.asoc.2018.03.011

    Article  Google Scholar 

  15. Yang L, Zhang W, Lai Z, Cheng Z (2018) A particle swarm clustering algorithm based on tree structure and neighbourhood. In: Li K, Li W, Chen Z, Liu Y (eds) Computational intelligence and intelligent systems. Springer, Singapore, pp 67–85

    Chapter  Google Scholar 

  16. Kushwaha N, Pant M (2019) A teaching–learning-based particle swarm optimization for data clustering. In: Tanveer M, Pachori RB (eds) Machine intelligence and signal analysis. Springer, Singapore, pp 223–233

    Chapter  Google Scholar 

  17. Kumar Y, Singh PK (2018) Improved cat swarm optimization algorithm for solving global optimization problems and its application to clustering. Appl Intell 48:2681–2697. https://doi.org/10.1007/s10489-017-1096-8

    Article  Google Scholar 

  18. Prakash J, Singh PK (2018) Hybrid Gbest-guided artificial bee colony for hard partitional clustering. Int J Syst Assur Eng Manag 9:911–928. https://doi.org/10.1007/s13198-017-0684-7

    Article  Google Scholar 

  19. Aljarah I, Mafarja M, Heidari AA et al (2020) Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach. Knowl Inf Syst 62:507–539. https://doi.org/10.1007/s10115-019-01358-x

    Article  Google Scholar 

  20. Dhal KG, Das A, Ray S, Das S (2019) A clustering based classification approach based on modified cuckoo search algorithm. Pattern Recognit Image Anal 29:344–359. https://doi.org/10.1134/S1054661819030052

    Article  Google Scholar 

  21. Tang Y, Wang N, Lin J, Liu X (2019) Using improved glowworm swarm optimization algorithm for clustering analysis. In: 2019 18th International symposium on distributed computing and applications for business engineering and science (DCABES). pp 190–194. https://doi.org/10.1109/DCABES48411.2019.00054

  22. Li Y, Cai J, Yang H et al (2019) A novel algorithm for initial cluster center selection. IEEE Access 7:74683–74693. https://doi.org/10.1109/ACCESS.2019.2921320

    Article  Google Scholar 

  23. Zabihi F, Nasiri B (2018) A novel history-driven artificial bee colony algorithm for data clustering. Appl Soft Comput 71:226–241. https://doi.org/10.1016/j.asoc.2018.06.013

    Article  Google Scholar 

  24. Tripathi AK, Sharma K, Bala M (2018) A novel clustering method using enhanced grey wolf optimizer and MapReduce. Big Data Res 14:93–100. https://doi.org/10.1016/j.bdr.2018.05.002

    Article  Google Scholar 

  25. Kumar V, Chhabra JK, Kumar D (2017) Grey wolf algorithm-based clustering technique. J Intell Syst 26:153–168. https://doi.org/10.1515/jisys-2014-0137

    Article  Google Scholar 

  26. Hassanzadeh T, Meybodi MR (2012) A new hybrid approach for data clustering using firefly algorithm and K-means. In: The 16th CSI international symposium on artificial intelligence and signal processing (AISP 2012). pp 7–11. https://doi.org/10.1109/AISP.2012.6313708

  27. Jadhav AN, Gomathi N (2018) WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alex Eng J 57:1569–1584. https://doi.org/10.1016/j.aej.2017.04.013

    Article  Google Scholar 

  28. Ghany KKA, AbdelAziz AM, Soliman THA, Sewisy AAE-M (2020) A hybrid modified step whale optimization algorithm with tabu search for data clustering. J King Saud Univ - Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2020.01.015

    Article  Google Scholar 

  29. Li Y, Ni Z, Jin F et al (2018) Research on clustering method of improved glowworm algorithm based on good-point set. Math Probl Eng 2018:8724084. https://doi.org/10.1155/2018/8724084

    Article  MATH  Google Scholar 

  30. Isimeto R, Yinka-Banjo C, Uwadia CO, Alienyi DC (2017) An enhanced clustering analysis based on glowworm swarm optimization. In: 2017 IEEE 4th International conference on soft computing & machine intelligence (ISCMI). pp 42–49. https://doi.org/10.1109/ISCMI.2017.8279595

  31. Neshat M, Yazdi SF, Yazdani D, Sargolzaei M (2012) A new cooperative algorithm based on PSO and K-means for data clustering. J Comput Sci 8:188–194. https://doi.org/10.3844/jcssp.2012.188.194

    Article  Google Scholar 

  32. Saida IB, Nadjet K, Omar B (2014) A New algorithm for data clustering based on cuckoo search optimization. In: Pan J-S, Krömer P, Snášel V (eds) Genetic and evolutionary computing. Springer International Publishing, Cham, pp 55–64

    Chapter  MATH  Google Scholar 

  33. Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey optimization algorithm for numerical optimization. Memetic Comput 6:31–47. https://doi.org/10.1007/s12293-013-0128-0

    Article  Google Scholar 

  34. Tang L, Liu J (1999) A comparison of tabu search and local search methods for single machine scheduling with ready tim. IFAC Proc 32:6127–6132

    Article  Google Scholar 

  35. Misagh Rahbari AJ A hybrid simulated annealing algorithm for travelling salesman problem with three neighbor generation structures. In: 10th International conference of iranian operations research society (ICIORS 2017), University of Mazandaran, Babolsar, Iran. https://hal.archives-ouvertes.fr/hal-01962049

  36. Sharma A, Sharma A, Panigrahi BK et al (2016) Ageist spider monkey optimization algorithm. Swarm Evol Comput 28:58–77. https://doi.org/10.1016/j.swevo.2016.01.002

    Article  Google Scholar 

  37. Arasomwan M, Adewumi A (2013) On adaptive chaotic inertia weights in Particle Swarm Optimization. In: IEEE Symposium on swarm intelligence (SIS). pp 72–79. https://doi.org/10.1109/SIS.2013.6615161

  38. Sharma N, Kaur A, Sharma H et al (2019) Chaotic spider monkey optimization algorithm with enhanced learning. In: Bansal JC, Das KN, Nagar A et al (eds) Soft computing for problem solving. Springer, Singapore, pp 149–161

    Chapter  Google Scholar 

  39. Kwedlo W (2011) A clustering method combining differential evolution with the K-means algorithm. Pattern Recogn Lett 32:1613–1621. https://doi.org/10.1016/j.patrec.2011.05.010

    Article  Google Scholar 

  40. Cura T (2012) A particle swarm optimization approach to clustering. Expert Syst Appl 39:1582–1588

    Article  Google Scholar 

  41. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recognit 33:1455–1465. https://doi.org/10.1016/S0031-3203(99)00137-5

    Article  Google Scholar 

  42. Figueiredo D (2013) When is statistical significance not significant? Braz Polit Sci Rev. https://doi.org/10.1590/S1981-38212013000100002

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit S. Patel.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V.P., Rawat, M.K. & Patel, A.S. Local neighbour spider monkey optimization algorithm for data clustering. Evol. Intel. 16, 133–151 (2023). https://doi.org/10.1007/s12065-021-00647-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00647-1

Keywords

Navigation