Skip to main content

Advertisement

Log in

UFS-LSTM: unsupervised feature selection with long short-term memory network for remote sensing scene classification

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

The aim of this research is to perform remote sensing scene classification, because it supports numerous strategic research fields like land use and land cover monitoring. However, classifying an enormous amount of remote sensing data is a challenging task in scene classification. In this research work, a new model is introduced to improve the feature extraction ability for better scene classification. A multiscale Retinex technique is employed for color restoration, and contrast enhancement in the aerial images that are collected from UC Merced, aerial image dataset, and RESISC45. Further, the feature extraction is carried out using steerable pyramid transform, gray level co-occurrence matrix features, and local ternary pattern. The feature extraction mechanism reduces overfitting risks, improves training process, and data visualization ability. Generally, the extracted features are high dimension, so an unsupervised feature selection based on multi subspace randomization and collaboration with state transition algorithm is proposed for selecting active features for better multiclass classification. The selected features are fed to long short term memory network for scene type classification. The experimental results showed that the proposed model achieved 99.14 %, 98.09%, and 99.25% of overall classification accuracy on UC Merced, RESISC45 and aerial image dataset. The proposed model showed a minimum of 0.03 % and maximum of 18.6 % improvement in classification accuracy compared to the existing models like self-attention based deep feature fusion, multitask learning system with convolutional neural network, multilayer feature fusion Wasserstein generative adversarial networks, and transfer learning model on UC Merced, RESISC45 and aerial dataset, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nogueira K, Penatti OA, Dos Santos JA (2017) Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit 61:539–556. doi:https://doi.org/10.1016/j.patcog.2016.07.001

    Article  Google Scholar 

  2. Pires de Lima R, Marfurt K (2020) Convolutional neural network for remote-sensing scene classification: Transfer learning analysis. Remote Sens 12:86. doi:https://doi.org/10.3390/rs12010086

    Article  Google Scholar 

  3. Huang XL, Ma X, Hu F (2018) Machine learning and intelligent communications. Mobile Netw Appl 23(1):68–70

    Article  Google Scholar 

  4. Wang S, Guan Y, Shao L (2020) Multi-granularity canonical appearance pooling for remote sensing scene classification. IEEE Trans Image Process 29:5396–5407. doi:https://doi.org/10.1109/tip.2020.2983560

    Article  MATH  Google Scholar 

  5. Zhang J, Lu C, Wang J, Yue XG, Lim SJ, Al-Makhadmeh Z, Tolba A (2020) Training convolutional neural networks with multi-size images and triplet loss for remote sensing scene classification. Sensors 20:1188. https://doi.org/10.3390/s20041188

    Article  Google Scholar 

  6. Xue W, Dai X, Liu L (2020) Remote sensing scene classification based on multi-structure deep features fusion. IEEE Access 8:28746–28755. doi:https://doi.org/10.1109/access.2020.2968771

    Article  Google Scholar 

  7. Dong R, Xu D, Jiao L, Zhao J, An J (2020) A Fast Deep Perception Network for Remote Sensing Scene Classification. Remote Sens 12:729. doi:https://doi.org/10.3390/rs12040729

    Article  Google Scholar 

  8. Zhang J, Liu J, Pan B, Shi Z (2020) Domain adaptation based on correlation subspace dynamic distribution alignment for remote sensing image scene classification. IEEE Trans Geosci Remote Sens 58:7920–7930. doi:https://doi.org/10.1109/tgrs.2020.2985072

    Article  Google Scholar 

  9. Li L, Liang P, Ma J, Jiao L, Guo X, Liu F, Sun C (2020) A Multiscale Self-Adaptive Attention Network for Remote Sensing Scene Classification. Remote Sens 12:2209. doi:https://doi.org/10.3390/rs12142209

    Article  Google Scholar 

  10. Zhao X, Zhang J, Tian J, Zhuo L, Zhang J (2020) Residual dense network based on channel-spatial attention for the scene classification of a high-resolution remote sensing image. Remote Sens 12:1887. doi:https://doi.org/10.3390/rs12111887

    Article  Google Scholar 

  11. Amiri K, Farah M, Leloglu UM (2020) BoVSG: bag of visual SubGraphs for remote sensing scene classification. Int J Remote Sens 41:1986–2003. doi:https://doi.org/10.1080/01431161.2019.1681602

    Article  Google Scholar 

  12. Yu D, Xu Q, Guo H, Zhao C, Lin Y, Li D (2020) An efficient and lightweight convolutional neural network for remote sensing image scene classification. Sensors 20: 1999

  13. Yuan Z, Huang W, Li L, Luo X (2020) Few-Shot Scene Classification with Multi-Attention DeepEMD Network in Remote Sensing. IEEE Access. doi:https://doi.org/10.1109/ACCESS.2017

    Article  Google Scholar 

  14. Kumar A, Abhishek K, Singh AK, Nerurkar P, Chandane M, Bhirud S, Patel D, Busnel Y (2020) Multilabel classification of remote sensed satellite imagery. Trans Emerg Telecommun Technol e3988. doi:https://doi.org/10.1002/ett.3988

    Article  Google Scholar 

  15. Zou Q, Ni L, Zhang T, Wang Q (2015) Deep learning based feature selection for remote sensing scene classification. IEEE Geosci Remote Sens Lett 12:2321–2325. doi:https://doi.org/10.1109/lgrs.2015.2475299

    Article  Google Scholar 

  16. Lu X, Zheng X, Yuan Y (2017) Remote sensing scene classification by unsupervised representation learning. IEEE Trans Geosci Remote Sens 55:5148–5157. doi:https://doi.org/10.1109/tgrs.2017.2702596

    Article  Google Scholar 

  17. Chaib S, Liu H, Gu Y, Yao H (2017) Deep feature fusion for VHR remote sensing scene classification. IEEE Trans Geosci Remote Sens 55:4775–4784. doi:https://doi.org/10.1109/tgrs.2017.2700322

    Article  Google Scholar 

  18. Tong W, Chen W, Han W, Li X, Wang L (2020) Channel-attention-based DenseNet network for remote sensing image scene classification. IEEE J Sel Top Appl Earth Obs Remote Sens 13:4121–4132. doi:https://doi.org/10.1109/jstars.2020.3009352

    Article  Google Scholar 

  19. Cao R, Fang L, Lu T, He N (2020) Self-attention-based deep feature fusion for remote sensing scene classification. IEEE Geosci Remote Sens Lett 18:43–47. doi:https://doi.org/10.1109/lgrs.2020.2968550

    Article  Google Scholar 

  20. Liu X, Zhou Y, Zhao J, Yao R, Liu B, Ma D, Zheng Y (2020) Multiobjective ResNet pruning by means of EMOAs for remote sensing scene classification. Neurocomputing 381:298–305. doi:https://doi.org/10.1016/j.neucom.2019.11.097

    Article  Google Scholar 

  21. Shawky OA, Hagag A, El-Dahshan ESA, Ismail MA (2020) Remote sensing image scene classification using CNN-MLP with data augmentation. Optik 221:165356. doi:https://doi.org/10.1016/j.ijleo.2020.165356

    Article  Google Scholar 

  22. Hung SC, Wu HC, Tseng MH (2020) Remote sensing scene classification and explanation using RSSCNet and LIME. Appl Sci 10:6151. doi:https://doi.org/10.3390/app10186151

    Article  Google Scholar 

  23. Zhao Z, Luo Z, Li J, Chen C, Piao Y (2020) When Self-Supervised Learning Meets Scene Classification: Remote Sensing Scene Classification Based on a Multitask Learning Framework. Remote Sens 12:3276. doi:https://doi.org/10.3390/rs12203276

    Article  Google Scholar 

  24. Wei Y, Luo X, Hu L, Peng Y, Feng J (2020) An improved unsupervised representation learning generative adversarial network for remote sensing image scene classification. Remote Sens Lett 11:598–607. https://doi.org/10.1080/2150704X.2020.1746854

    Article  Google Scholar 

  25. Yan P, He F, Yang Y, Hu F (2020) Semi-supervised representation learning for remote sensing image classification based on generative adversarial networks. IEEE Access 8:54135–54144. doi:https://doi.org/10.1109/access.2020.2981358

    Article  Google Scholar 

  26. Ma A, Wan Y, Zhong Y, Wang J, Zhang L (2021) SceneNet: Remote sensing scene classification deep learning network using multi-objective neural evolution architecture search. ISPRS J Photogrammet Remote Sens 172:171–188

    Article  Google Scholar 

  27. Gao Y, Shi J, Li J, Wang R (2021) Remote sensing scene classification based on high-order graph convolutional network. European Journal of Remote Sensing 54(sup1):141–155

    Article  Google Scholar 

  28. Bi Q, Zhang H, Qin K (2021) Multi-scale stacking attention pooling for remote sensing scene classification, 436. Neurocomputing, pp 147–161

  29. Akodad S, Bombrun L, Xia J, Berthoumieu Y, Germain C (2020) Ensemble learning approaches based on covariance pooling of CNN features for high resolution remote sensing scene classification. Remote Sens, 12(20), p.3292

  30. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. SIGSPATIAL international conference on advances in geographic information systems 270–279. doi:https://doi.org/10.1145/1869790.1869829

  31. Xia GS, Hu J, Hu F, Shi B, Bai X, Zhong Y, Zhang L, Lu X (2017) AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans Geosci Remote Sens 55:3965–3981. doi:https://doi.org/10.1109/tgrs.2017.2685945

    Article  Google Scholar 

  32. Zheng X, Yuan Y, Lu X (2019) A deep scene representation for aerial scene classification. IEEE Trans Geosci Remote Sens 57:4799–4809. doi:https://doi.org/10.1109/tgrs.2019.2893115

    Article  Google Scholar 

  33. Cheng G, Han J, Lu X (2017) Remote sensing image scene classification: Benchmark and state of the art. Proceedings of the IEEE 105:1865–1883. doi:https://doi.org/10.1109/jproc.2017.2675998

  34. Mahmood Z, Muhammad N, Bibi N, Malik YM, Ahmed N (2018) Human visual enhancement using Multi Scale Retinex. Inf Med Unlocked 13:9–20. doi:https://doi.org/10.1016/j.imu.2018.09.001

    Article  Google Scholar 

  35. Zotin A (2018) Fast algorithm of image enhancement based on multi-scale Retinex. Procedia Comput Sci 131:6–14

    Article  Google Scholar 

  36. El Margae S, Kerroum MA, Fakhri Y (2017) Robust color traffic sign recognition algorithm based on steerable pyramid transform and extreme learning machine. Int J Tomograp Simulation™ 30:77–95

    Google Scholar 

  37. Mahmood MT, Ali U, Choi YK (2020) Single image defocus blur segmentation using Local Ternary Pattern. ICT Express 6:113–116

    Article  Google Scholar 

  38. Fadl S, Megahed A, Han Q, Qiong L (2020) Frame duplication and shuffling forgery detection technique in surveillance videos based on temporal average and gray level co-occurrence matrix. Multimedia Tools Appl. 1–25. doi:https://doi.org/10.1007/s11042-019-08603-z

  39. Sherstinsky A (2020) Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D 404:132306. doi:https://doi.org/10.1016/j.physd.2019.132306

    Article  MATH  Google Scholar 

Download references

Funding

This study was not funded by any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Setty, S.L.N. UFS-LSTM: unsupervised feature selection with long short-term memory network for remote sensing scene classification. Evol. Intel. 16, 299–315 (2023). https://doi.org/10.1007/s12065-021-00660-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00660-4

Keywords

Navigation