Abstract
Rapid growth in technology has changed the way humans live. Ongoing development in the automobile industry is creating intelligent vehicles and this mode of transportation will assist human society. The need for this survey arises to identify the scope of an intelligent vehicle through a computer vision approach equipped with recent technological trends. In this article, the major technological phases of intelligent vehicles are analyzed and discussed. The operational mechanism in these phases is mostly based on vision sensors that facilitate these vehicles to perceive the heterogeneous and dynamic environments and help them to make appropriate decisions. This study identifies various state-of-art techniques and phase-wise datasets used in the literature. It highlights the advancement in different phases, challenges, and scopes for the design and development of intelligent vehicles system.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Okumura B et al (2016) Challenges in perception and decision making for intelligent automotive vehicles: a case study. IEEE Trans Intell Veh 1(1):20–32. https://doi.org/10.1109/tiv.2016.2551545
“GHO | By category | Road traffic deaths—Data by country, https://apps.who.int/gho/data/node.main.A997,” WHO, Accessed: Aug. 21, 2019. [Online]. Available: https://apps.who.int/gho/data/node.main.A997
Azizi A, Entessari F, Osgouie KG, Rashnoodi AR (2014) Introducing neural networks as a computational intelligent technique. Mech Mater 464:369–374. https://doi.org/10.4028/www.scientific.net/AMM.464.369
Pandey P, Dewangan KK and Dewangan DK (2018) Enhancing the quality of satellite images using fuzzy inference system. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing, ICECDS 2017. https://doi.org/10.1109/ICECDS.2017.8390024
A. Azizi, “Applications of Artificial Intelligence Techniques to Enhance Sustainability of Industry 4 . 0 : Design of an Artificial Neural Network Model as Dynamic Behavior Optimizer of Robotic Arms,” vol. 2020, 2020.
Zhao Y, Noorbakhsh A, Koopialipoor M, Azizi A (2020) A new methodology for optimization and prediction of rate of penetration during drilling operations. Eng Comput 36(2):587–595. https://doi.org/10.1007/s00366-019-00715-2
Chaudhuri A, Sahu TP (2022) Multi-objective feature selection based on quasi-oppositional based Jaya algorithm for microarray data. Knowl-Based Syst 236:107804. https://doi.org/10.1016/j.knosys.2021.107804
Ali U, Dewangan KK, Dewangan DK (2018) Distributed denial of service attack detection using ant bee colony and artificial neural network in cloud computing. Adv Intell Syst Comput 652:165–175. https://doi.org/10.1007/978-981-10-6747-1_19
Azizi A (2019) Hybrid artificial intelligence optimization technique. https://doi.org/10.1007/978-981-13-2640-0
Razmjooy N (2021) A computational intelligence perspective on multimodal image registration for unmanned aerial vehicles (UAVs). Springer Nature, Switzerland
Fernandes SR, Razmjooy N (2021) Nondestructive diagnosis and analysis of computed microtomography images via texture descriptors. Springer Nature, Switzerland (2019)
Guo G, Razmjooy N (2019) A new interval differential equation for edge detection and determining breast cancer regions in mammography images. Syst Sci Control Eng. https://doi.org/10.1080/21642583.2019.1681033
Sharma A, Gupta R, Lakshmanan K, Gupta A (2021) Transition based discount factor for model free algorithms in reinforcement learning. Symmetry. https://doi.org/10.3390/sym13071197
Dewangan DK, Sahu SP, Sairam B, Agrawal A (2021) VLDNet: vision-based lane region detection network for intelligent vehicle system using semantic segmentation. Computing 103(12):2867–2892. https://doi.org/10.1007/s00607-021-00974-2
Elon Musk statement about Self Driving Car. https://9to5google.com/2015/10/16/elon-musk-says-that-the-lidar-google-uses-in-its-self-driving-car-doesnt-make-sense-in-a-car-context/ (accessed Jan 08, 2022)
Belyankina ER and Moreva NA (2021) Unmanned cars. pp 185–187. Available: https://www.elibrary.ru/item.asp?id=46600583
Geng L, Sun J, Xiao Z, Zhang F, Wu J (2018) Combining CNN and MRF for road detection. Comput Electr Eng 70:895–903. https://doi.org/10.1016/j.compeleceng.2017.11.026
Zhu X, Zhang X, Zhang XY, Xue Z, Wang L (2019) A novel framework for semantic segmentation with generative adversarial network. J Vis Commun Image Represent 58:532–543. https://doi.org/10.1016/j.jvcir.2018.11.020
Qingqun Ning CC, Zhu J (2018) Very fast semantic image segmentation using hierarchical dilation and feature refining. Cognit Comput 10:62–72
Brostow GJ, Shotton J, Fauqueur J, Cipolla R (2008) Segmentation and recognition using structure from motion point clouds. Lect Notes Comput Sci 5302:44–57. https://doi.org/10.1007/978-3-540-88682-2-5 (LNCS, no. PART 1)
Brostow GJ, Fauqueur J, Cipolla R (2009) Semantic object classes in video: a high-definition ground truth database. Pattern Recognit Lett 30(2):88–97. https://doi.org/10.1016/j.patrec.2008.04.005
Cordts M et al (2016) The Cityscapes Dataset for Semantic Urban Scene Understanding. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016:3213–3223. https://doi.org/10.1109/CVPR.2016.350
Cordts M et al (2015) The cityscapes dataset. CVPR Work Futur Datasets Vis
Fritsch J, Kuhnl T, Geiger A (2013) A new performance measure and evaluation benchmark for road detection algorithms. IEEE Conf Intell Transp Syst Proce ITSC. https://doi.org/10.1109/ITSC.2013.6728473
Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615
Yadav S and Arora C (2017) Deep cnn with color lines model for unmarked road segmentation Indian Institute of Technology Delhi New Delhi 110016 Indraprastha Institute of Information Technology Delhi New Delhi 110020. pp 585–589
Zhou Y, Lyu Y, Huang X (2019) RoadNet: an 80-mW hardware accelerator for road detection. IEEE Embed Syst Lett 11(1):21–24. https://doi.org/10.1109/LES.2018.2841199
Dewangan DK, Sahu SP (2021) Road detection using semantic segmentation-based convolutional neural network for intelligent vehicle system. In: Data engineering and communication technology. Lecture notes on data engineering and communications technologies. Springer, Singapore, pp 629–637
Song X, Rui T, Zhang S, Fei J, Wang X (2018) A road segmentation method based on the deep auto-encoder with supervised learning. Comput Electr Eng 68:381–388. https://doi.org/10.1016/j.compeleceng.2018.04.003
Han X, Lu J, Zhao C, You S, Li H (2018) Semisupervised and weakly supervised road detection based on generative adversarial networks. IEEE Signal Process Lett 25(4):551–555. https://doi.org/10.1109/LSP.2018.2809685
H. qiang Geng, H. Zhang, Y. bing Xue, M. Zhou, G. ping Xu, and Z. Gao, “Semantic image segmentation with fused CNN features,” Optoelectron. Lett., vol. 13, no. 5, pp. 381–385, 2017, doi: https://doi.org/10.1007/s11801-017-7086-6.
Dewangan DK, Sahu SP (2021) RCNet: road classification convolutional neural networks for intelligent vehicle system. Intell Serv Robot 14(2):199–214. https://doi.org/10.1007/s11370-020-00343-6
Peng B, Li Y, He L, Fan K, Tong L (2018) Road segmentation of UAV RS image using adversarial network with multi-scale context aggregation. Int Geosci Remote Sens Symp 2018:6935–6938. https://doi.org/10.1109/IGARSS.2018.8517641
Liu X, Deng Z (2018) Segmentation of drivable road using deep fully convolutional residual network with pyramid pooling. Cognit Comput 10(2):272–281. https://doi.org/10.1007/s12559-017-9524-y
Kakegawa S, Matono H, Kido H, Shima T (2018) Road surface segmentation based on vertically local disparity histogram for stereo camera. Int J Intell Transp Syst Res 16(2):90–97. https://doi.org/10.1007/s13177-017-0140-8
Valente M, Stanciulescu B (2017) Real-time method for general road segmentation. IEEE Intell Veh Symp Proc. https://doi.org/10.1109/IVS.2017.7995758
Shi J, Fu F, Wang Y and Wang J (2016) A novel path segmentation method for autonomous road following. In: ICSPCC 2016 - IEEE Int. Conf. Signal Process. Commun. Comput. Conf. Proc., pp 1–6. https://doi.org/10.1109/ICSPCC.2016.7753701
Xia X, Zhao J, Li X, and Wang H (2016) Segmentation based on the unstructured road with shadow. In: Proc. - 2016 8th Int. Conf. Intell. Human-Machine Syst. Cybern. IHMSC 2016, vol. 1. pp 501–504. https://doi.org/10.1109/IHMSC.2016.71
Cheng M, Zhang Y, Su Y, Alvarez JM, Kong H (2018) Curb detection for road and sidewalk detection. IEEE Trans Veh Technol 67(11):10330–10342. https://doi.org/10.1109/TVT.2018.2865836
Yang W, Fang B, Tang YY (2018) Fast and accurate vanishing point detection and its application in inverse perspective mapping of structured road. IEEE Trans Syst Man Cybernet Syst 48(5):755–766. https://doi.org/10.1109/TSMC.2016.2616490
Bao J, Zhang Y, Su X, Zheng R (2018) Unpaved road detection based on spatial fuzzy clustering algorithm. EURASIP J Image Video Process 1:2018. https://doi.org/10.1186/s13640-018-0260-3
De Cristóforis P, Nitsche MA, Krajník T, Mejail M (2016) Real-time monocular image-based path detection: a GPU-based embedded solution for on-board execution on mobile robots. J Real-Time Image Process 11(2):335–348. https://doi.org/10.1007/s11554-013-0356-z
Song W, Yang Y, Fu M, Li Y, Wang M (2018) Lane detection and classification for forward collision warning system based on stereo vision. IEEE Sens J 18(12):5151–5163. https://doi.org/10.1109/JSEN.2018.2832291
Dewangan DK, Sahu SP (2021) Deep learning-based speed bump detection model for intelligent vehicle system using raspberry Pi. IEEE Sens J 21(3):3570–3578. https://doi.org/10.1109/JSEN.2020.3027097
Ye YY, Hao XL, Chen HJ (2018) Lane detection method based on lane structural analysis and CNNs. IET Intell Transp Syst 12(6):513–520. https://doi.org/10.1049/iet-its.2017.0143
Chen J, Ruan Y, Chen Q (2018) A precise information extraction algorithm for lane lines. China Commun 15(10):210–219. https://doi.org/10.1109/CC.2018.8485482
Ju Han Yoo DHK, Lee S-W, Park S-K (2017) A robust lane detection method based on vanishing point estimation using the relevance of line segments. IEEE Trans Intell Transp Syst 18(12):3254–3266
De Paula MB, Jung CR (2015) Automatic detection and classification of road lane markings using onboard vehicular cameras. IEEE Trans Intell Transp Syst 16(6):3160–3169. https://doi.org/10.1109/TITS.2015.2438714
Su Y, Zhang Y, Lu T, Yang J, Kong H (2018) Vanishing point constrained lane detection with a stereo camera. IEEE Trans Intell Transp Syst 19(8):2739–2744. https://doi.org/10.1109/TITS.2017.2751746
Shin BS, Tao J, Klette R (2015) A superparticle filter for lane detection. Pattern Recognit 48(11):3333–3345. https://doi.org/10.1016/j.patcog.2014.10.011
Niu J, Lu J, Xu M, Lv P, Zhao X (2016) Robust lane detection using two-stage feature extraction with curve fitting. Pattern Recognit 59:225–233. https://doi.org/10.1016/j.patcog.2015.12.010
Moon YY, Geem ZW, Han GT (2018) Vanishing point detection for self-driving car using harmony search algorithm. Swarm Evol Comput 41(February):111–119. https://doi.org/10.1016/j.swevo.2018.02.007
Dewangan DK, Sahu SP (2021) Lane detection for intelligent vehicle system using image processing techniques. Data science. Transactions on computer systems and networks. Springer, Singapore
Yi SC, Chen YC, Chang CH (2015) A lane detection approach based on intelligent vision. Comput Electr Eng 42(2):23–29. https://doi.org/10.1016/j.compeleceng.2015.01.002
Li C, Dai B, Wang R, Fang Y, Yuan X, Wu T (2016) Multi-lane detection based on omnidirectional camera using anisotropic steerable filters. IET Intell Transp Syst 10(5):298–307. https://doi.org/10.1049/iet-its.2015.0144
Piao J, Shin H (2017) Robust hypothesis generation method using binary blob analysis for multi-lane detection. IET Image Process 11(12):1210–1218. https://doi.org/10.1049/iet-ipr.2016.0506
Zheng F, Luo S, Song K, Yan CW, Wang MC (2018) Improved lane line detection algorithm based on hough transform. Pattern Recognit Image Anal 28(2):254–260. https://doi.org/10.1134/S1054661818020049
Wang Y, Shen D, Teoh EK (2000) Lane detection using spline model. Pattern Recognit Lett 21(8):677–689. https://doi.org/10.1016/S0167-8655(00)00021-0
Wang Y, Dahnoun N, Achim A (2012) A novel system for robust lane detection and tracking. Signal Process 92(2):319–334. https://doi.org/10.1016/j.sigpro.2011.07.019
Obradović D, Konjović Z, Pap E, Rudas IJ (2013) Linear fuzzy space based road lane model and detection. Knowl-Based Syst 38:37–47. https://doi.org/10.1016/j.knosys.2012.01.002
Dewangan DK, Sahu SP (2021) Driving behaviour analysis of intelligent vehicle system for lane detection using vision-sensor. IEEE Sens J 21(5):6367–6375. https://doi.org/10.1109/JSEN.2020.3037340
Son J, Yoo H, Kim S, Sohn K (2015) Real-time illumination invariant lane detection for lane departure warning system. Expert Syst Appl 42(4):1816–1824. https://doi.org/10.1016/j.eswa.2014.10.024
Aly H, Basalamah A, Youssef M (2016) Robust and ubiquitous smartphone-based lane detection. Pervasive Mob Comput 26:35–56. https://doi.org/10.1016/j.pmcj.2015.10.019
Aparna, Bhatia Y, Rai R, Gupta V, Aggarwal N, Akula A (2019) Convolutional neural networks based potholes detection using thermal imaging. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2019.02.004
Dewangan DK, Sahu SP (2021) PotNet: pothole detection for autonomous vehicle system using convolutional neural network. Electron Lett 57(2):53–56. https://doi.org/10.1049/ell2.12062
Varona B, Monteserin A, Teyseyre A (2019) A deep learning approach to automatic road surface monitoring and pothole detection. Pers Ubiquitous Comput. https://doi.org/10.1007/s00779-019-01234-z
Koch C, Brilakis I (2011) Pothole detection in asphalt pavement images. Adv Eng Inform 25(3):507–515. https://doi.org/10.1016/j.aei.2011.01.002
Murthy SBS, Varaprasad G (2014) Detection of potholes in autonomous vehicle. IET Intell Transp Syst 8(6):543–549. https://doi.org/10.1049/iet-its.2013.0138
Jang DW, Park RH (2016) Pothole detection using spatio-Temporal saliency. IET Intell Transp Syst 10(9):605–612. https://doi.org/10.1049/iet-its.2016.0006
Sawalakhe H, Prakash R (2018) Development of roads pothole detection system using image processing. Lect Notes Electr Eng 492:187–195. https://doi.org/10.1007/978-981-10-8575-8_20
Li C, Song D, Tong R, Tang M (2019) Illumination-aware faster R-CNN for robust multispectral pedestrian detection. Pattern Recognit 85:161–171. https://doi.org/10.1016/j.patcog.2018.08.005
Murugan BS, Elhoseny M, Shankar K, Uthayakumar J (2019) Region-based scalable smart system for anomaly detection in pedestrian walkways. Comput Electr Eng 75:146–160. https://doi.org/10.1016/j.compeleceng.2019.02.017
Kim JH, Batchuluun G, Park KR (2018) Pedestrian detection based on faster R-CNN in nighttime by fusing deep convolutional features of successive images. Expert Syst Appl 114:15–33. https://doi.org/10.1016/j.eswa.2018.07.020
Mateus A, Ribeiro D, Miraldo P, Nascimento JC (2019) Efficient and robust pedestrian detection using deep learning for human-aware navigation. Rob Auton Syst 113:23–37. https://doi.org/10.1016/j.robot.2018.12.007
Dominguez-Sanchez A, Cazorla M, Orts-Escolano S (2017) Pedestrian movement direction recognition using convolutional neural networks. IEEE Trans Intell Transp Syst 18(12):3540–3548. https://doi.org/10.1109/TITS.2017.2726140
Yoshihashi R, Trinh TT, Kawakami R, You S, Iida M, Naemura T (2018) Pedestrian detection with motion features via two-stream ConvNets. IPSJ Trans Comput Vis Appl. https://doi.org/10.1186/s41074-018-0048-5
Yang D, Zhang J, Xu S, Ge S, Kumar GH, Zhang X (2018) Real-time pedestrian detection via hierarchical convolutional feature. Multimed Tools Appl 77(19):25841–25860. https://doi.org/10.1007/s11042-018-5819-6
Ouyang W, Zeng X, Wang X (2016) Partial occlusion handling in pedestrian detection with a deep model. IEEE Trans Circ Syst Video Technol 26(11):2123–2137. https://doi.org/10.1109/TCSVT.2015.2501940
Tomè STD, Monti F, Baroffion L, Bondi L, Tagliasacchi M (2016) Deep Convolutional Neural Networks for pedestrian detection. Signal Process Image Commun 47:482–489
Suhr JK, Jung HG (2018) Rearview camera-based backover warning system exploiting a combination of pose-specific pedestrian recognitions. IEEE Trans Intell Transp Syst 19(4):1122–1129. https://doi.org/10.1109/TITS.2017.2709797
Jiang Y, Wang J, Liang Y, Xia J (2019) Combining static and dynamic features for real-time moving pedestrian detection. Multimed Tools Appl 78(3):3781–3795. https://doi.org/10.1007/s11042-018-6057-7
Kim J, Mesmakhosroshahi M (2013) Stereo-based region of interest generation for real-time pedestrian detection. Peer-to-Peer Netw Appl 8(2):181–188. https://doi.org/10.1007/s12083-013-0234-2
Cao J, Pang Y, Li X (2016) Pedestrian detection inspired by appearance constancy and shape symmetry. IEEE Trans Image Process 25(12):5538–5551. https://doi.org/10.1109/TIP.2016.2609807
Biswas SK, Milanfar P (2017) Linear support tensor machine with LSK channels: pedestrian detection in thermal infrared images. IEEE Trans Image Process 26(9):4229–4242. https://doi.org/10.1109/TIP.2017.2705426
Hua C, Makihara Y, Yagi Y, Iwasaki S, Miyagawa K, Li B (2015) Onboard monocular pedestrian detection by combining spatio-temporal hog with structure from motion algorithm. Mach Vis Appl 26(2–3):161–183. https://doi.org/10.1007/s00138-014-0653-y
Li H, Liu Y, Xiong S, Wang L (2015) Pedestrian detection algorithm based on video sequences and laser point cloud. Front Comput Sci 9(3):402–414. https://doi.org/10.1007/s11704-014-3413-2
Zhang S, Bauckhage C, Cremers AB (2015) Efficient pedestrian detection via rectangular features based on a statistical shape model. IEEE Trans Intell Transp Syst 16(2):763–775. https://doi.org/10.1109/TITS.2014.2341042
Hu X et al (2019) SINet: a scale-insensitive convolutional neural network for fast vehicle detection. IEEE Trans Intell Transp Syst 20(3):1010–1019. https://doi.org/10.1109/TITS.2018.2838132
Cai Y, Wang H, Zheng Z, Sun X (2017) Scene-adaptive vehicle detection algorithm based on a composite deep structure. IEEE Access 5:22804–22811. https://doi.org/10.1109/ACCESS.2017.2756081
Zhang Q, Wan C, Han W (2018) A modified faster region-based convolutional neural network approach for improved vehicle detection performance. Multimed Tools Appl. https://doi.org/10.1007/s11042-018-6769-8
Wang X, Zhang W, Wu X, Xiao L, Qian Y, Fang Z (2019) Real-time vehicle type classification with deep convolutional neural networks. J Real-Time Image Process 16(1):5–14. https://doi.org/10.1007/s11554-017-0712-5
Dai X (2019) HybridNet: a fast vehicle detection system for autonomous driving. Signal Process Image Commun 70:79–88. https://doi.org/10.1016/j.image.2018.09.002
Li Y, Er MJ, Shen D (2015) A novel approach for vehicle detection using an AND-OR-graph-based multiscale model. IEEE Trans Intell Transp Syst 16(4):2284–2289. https://doi.org/10.1109/TITS.2014.2359493
Tao H, Lu X (2019) Automatic smoky vehicle detection from traffic surveillance video based on vehicle rear detection and multi-feature fusion. IET Intell Transp Syst 13(2):293–302. https://doi.org/10.1049/iet-its.2018.5039
Kuang H, Chen L, Chan LLH, Cheung RCC, Yan H (2019) “Feature selection based on tensor decomposition and object proposal for night-time multiclass vehicle detection. IEEE Trans Syst Man Cybern Syst 49(1):71–80. https://doi.org/10.1109/TSMC.2018.2872891
Wang X, Xu L, Sun H, Xin J, Zheng N (2016) On-road vehicle detection and tracking using MMW radar and monovision fusion. IEEE Trans Intell Transp Syst 17(7):2075–2084. https://doi.org/10.1109/TITS.2016.2533542
Dooley D, McGinley B, Hughes C, Kilmartin L, Jones E, Glavin M (2016) A blind-zone detection method using a rear-mounted fisheye camera with combination of vehicle detection methods. IEEE Trans Intell Transp Syst 17(1):264–278. https://doi.org/10.1109/TITS.2015.2467357
Wang C, Fang Y, Zhao H, Guo C, Mita S, Zha H (2016) Probabilistic inference for occluded and multiview on-road vehicle detection. IEEE Trans Intell Transp Syst 17(1):215–229. https://doi.org/10.1109/TITS.2015.2466109
Murugan V, Vijaykumar VR (2018) Automatic moving vehicle detection and classification based on artificial neural fuzzy inference system. Wirel Pers Commun 100(3):745–766. https://doi.org/10.1007/s11277-018-5347-8
Tang Y, Zhang C, Gu R, Li P, Yang B (2017) Vehicle detection and recognition for intelligent traffic surveillance system. Multimed Tools Appl 76(4):5817–5832. https://doi.org/10.1007/s11042-015-2520-x
Zhang D (2018) Vehicle target detection methods based on color fusion deformable part model. Eurasip J Wirel Commun Netw. https://doi.org/10.1186/s13638-018-1111-8
Wei Y, Tian Q, Guo J, Huang W, Cao J (2019) Multi-vehicle detection algorithm through combining Harr and HOG features. Math Comput Simul 155:130–145. https://doi.org/10.1016/j.matcom.2017.12.011
Anandhalli M, Baligar VP (2018) A novel approach in real-time vehicle detection and tracking using Raspberry Pi. Alexandria Eng J 57(3):1597–1607. https://doi.org/10.1016/j.aej.2017.06.008
Ra M, Jung HG, Suhr JK, Kim WY (2018) Part-based vehicle detection in side-rectilinear images for blind-spot detection. Expert Syst Appl 101:116–128. https://doi.org/10.1016/j.eswa.2018.02.005
Fang Song J (2018) Vehicle detection using spatial relationship gmm for complex urban surveillance in daytime and nighttime. Int J Parallel Prog 46(5):859–872. https://doi.org/10.1007/s10766-017-0543-9
Nam Y, Nam YC (2018) Vehicle classification based on images from visible light and thermal cameras. Eurasip J Image Video Process 2018(1):2–10. https://doi.org/10.1186/s13640-018-0245-2
Zhou Y, Liu L, Shao L, Mellor M (2018) Fast automatic vehicle annotation for urban traffic surveillance. IEEE Trans Intell Transp Syst 19(6):1973–1984. https://doi.org/10.1109/TITS.2017.2740303
Wang JG, Zhou LB (2019) Traffic light recognition with high dynamic range imaging and deep learning. IEEE Trans Intell Transp Syst 20(4):1341–1352. https://doi.org/10.1109/TITS.2018.2849505
Hirabayashi M, Sujiwo A, Monrroy A, Kato S, Edahiro M (2019) Traffic light recognition using high-definition map features. Rob Auton Syst 111:62–72. https://doi.org/10.1016/j.robot.2018.10.004
Lu Y, Lu J, Zhang S, Hall P (2018) Traffic signal detection and classification in street views using an attention model. Comput Vis Media 4(3):253–266. https://doi.org/10.1007/s41095-018-0116-x
Lee E, Kim D (2019) Accurate traffic light detection using deep neural network with focal regression loss. Image Vis Comput 87:24–36. https://doi.org/10.1016/j.imavis.2019.04.003
Luo H, Yang Y, Tong B, Wu F, Fan B (2018) Traffic sign recognition using a multi-task convolutional neural network. IEEE Trans Intell Transp Syst 19(4):1100–1111. https://doi.org/10.1109/TITS.2017.2714691
Lee HS, Kim K (2018) Simultaneous traffic sign detection and boundary estimation using convolutional neural network. IEEE Trans Intell Transp Syst 19(5):1652–1663. https://doi.org/10.1109/TITS.2018.2801560
Zhu Y, Liao M, Yang M, Liu W (2018) Cascaded segmentation-detection networks for text-based traffic sign detection. IEEE Trans Intell Transp Syst 19(1):209–219. https://doi.org/10.1109/TITS.2017.2768827
Li J, Wang Z (2019) Real-time traffic sign recognition based on efficient CNNs in the wild. IEEE Trans Intell Transp Syst 20(3):975–984. https://doi.org/10.1109/TITS.2018.2843815
Yuan Y, Xiong Z, Wang Q (2019) VSSA-NET: vertical spatial sequence attention network for traffic sign detection. IEEE Trans Image Process 28(7):3423–3434. https://doi.org/10.1109/TIP.2019.2896952
Liu Z, Du J, Tian F, Wen J (2019) MR-CNN: a multi-scale region-based convolutional neural network for small traffic sign recognition. IEEE Access 7:57120–57128. https://doi.org/10.1109/ACCESS.2019.2913882
Wang G, and Ma X (2018) Traffic police gesture recognition using RGB-D and faster R-CNN. In: 2018 Int. Conf. Intell. Informatics Biomed. Sci. ICIIBMS 2018, vol. 3, pp 78–81. https://doi.org/10.1109/ICIIBMS.2018.8549975
Wang H, Zhang Q, Du Y, and Wang S (2019) Traffic police pose estimation based on multi-branch network. In: Proc. 2018 Chinese Autom. Congr. CAC 2018, no. 1, pp 1769–1773. https://doi.org/10.1109/CAC.2018.8623106
Y C, Yin J (2018) Hand gesture recognition using in intelligent transportation. Cogn Syst Signal Process 1006:52–64
Alam A, Jaffery ZA (2019) Indian traffic sign detection and recognition. Int J Intell Transp Syst Res. https://doi.org/10.1007/s13177-019-00178-1
Guo F, Cai Z and Tang J (2011) Chinese traffic police gesture recognition in complex scene. In: Proc. 10th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. 2011, 8th IEEE Int. Conf. Embed. Softw. Syst. ICESS 2011, 6th Int. Conf. FCST 2011, pp 1505–1511. https://doi.org/10.1109/TrustCom.2011.208
Jang C, Cho S, Jeong S, Suhr JK, Jung HG, Sunwoo M (2017) Traffic light recognition exploiting map and localization at every stage. Expert Syst Appl 88:290–304. https://doi.org/10.1016/j.eswa.2017.07.003
Hou YL, Hao X, Chen H (2017) A cognitively motivated method for classification of occluded traffic signs. IEEE Trans Syst Man Cybern Syst 47(2):255–262. https://doi.org/10.1109/TSMC.2016.2560126
Yuan Y, Xiong Z, Wang Q (2017) An incremental framework for video-based traffic sign detection, tracking, and recognition. IEEE Trans Intell Transp Syst 18(7):1918–1929. https://doi.org/10.1109/TITS.2016.2614548
Zhu Z, Lu J, Martin RR, Hu S (2017) An optimization approach for localization refinement of candidate traffic signs. IEEE Trans Intell Transp Syst 18(11):3006–3016. https://doi.org/10.1109/TITS.2017.2665647
Sathya R, Kalaiselvi Geetha M (2015) Framework for traffic personnel gesture recognition. Procedia Comput Sci 46:1700–1707. https://doi.org/10.1016/j.procs.2015.02.113
Prakash A, Swathi R, Kumar S, Ashwin TS and Reddy GRM (2017) Kinect based real time gesture recognition tool for air marshallers and traffic policemen. In: Proc. - IEEE 8th Int. Conf. Technol. Educ. T4E 2016, pp 34–37, https://doi.org/10.1109/T4E.2016.015
Guo F, Tang J, Wang X (2017) Gesture recognition of traffic police based on static and dynamic descriptor fusion. Multimed Tools Appl 76(6):8915–8936. https://doi.org/10.1007/s11042-016-3497-9
Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2010) The pascal visual object classes (VOC) challenge. Int J Comput Vis 88(2):303–338. https://doi.org/10.1007/s11263-009-0275-4
Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, and Torralba A (2017) Scene parsing through ADE20K dataset. In: Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp 5122–5130, https://doi.org/10.1109/CVPR.2017.544
Zhou B et al (2019) Semantic understanding of scenes through the ADE20K Dataset. Int J Comput Vis 127(3):302–321. https://doi.org/10.1007/s11263-018-1140-0
Gould S, Fulton R, Koller D (2009) Decomposing a scene into geometric and semantically consistent regions. Proc IEEE Int Conf Comput Vis. https://doi.org/10.1109/ICCV.2009.5459211
Song S, Lichtenberg SP and Xiao J (2015) SUN RGB-D: a RGB-D scene understanding benchmark suite. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07–12-June, pp 567–576, https://doi.org/10.1109/CVPR.2015.7298655
Aly M (2008) Real time detection of lane markers in urban streets. IEEE Intell Veh Symp Proc. https://doi.org/10.1109/IVS.2008.4621152
Maddern W, Pascoe G, Linegar C and Newman P (2015) 1 Year, 1000 km : The Oxford RobotCar Dataset,” vol. 3
Pan X, Shi J, Luo P, Wang X, Tang X (2018) Spatial as deep: spatial CNN for traffic scene understanding. 32nd AAAI Conf Artif Intell AAAI 2018:7276–7283
Veit T, Tarel JP, Nicolle P, Charbonnier P (2008) Evaluation of road marking feature extraction. IEEE Conf Intell Transp Syst Proc. https://doi.org/10.1109/ITSC.2008.4732564
Image D and Korea S (2017) DIML/CVL RGB-D dataset: 2M RGB-D images of natural indoor and outdoor scenes. no. Diml, pp 1–7, Available: https://dimlrgbd.github.io/
Hwang S, Park J, Kim N, Choi Y, Kweon IS (2015) Multispectral pedestrian detection: aenchmark dataset and baseline. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn. https://doi.org/10.1109/CVPR.2015.7298706
Chan AB, Vasconcelos N (2008) Modeling, clustering, and segmenting video with mixtures of dynamic textures. IEEE Trans Pattern Anal Mach Intell 30(5):909–926. https://doi.org/10.1109/TPAMI.2007.70738
Surasak T, Takahiro I, Cheng CH, Wang CE and Sheng PY (2018) Histogram of oriented gradients for human detection in video. In: Proc. 2018 5th Int. Conf. Bus. Ind. Res. Smart Technol. Next Gener. Information, Eng. Bus. Soc. Sci. ICBIR 2018, pp. 172–176, https://doi.org/10.1109/ICBIR.2018.8391187
Cao J, Pang Y, Li X (2017) Learning multilayer channel features for pedestrian detection. IEEE Trans Image Process 26(7):3210–3220. https://doi.org/10.1109/TIP.2017.2694224
Enzweiler M, Eigenstetter A, Schiele B, Gavrila DM (2010) Multi-cue pedestrian classification with partial occlusion handling. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn. https://doi.org/10.1109/CVPR.2010.5540111
Dollar P, Wojek C, Schiele B and Perona P (2010) Pedestrian detection: a benchmark. pp 304–311. https://doi.org/10.1109/cvpr.2009.5206631
Ouyang X, Cheng Y, Jiang Y, Li C-L and Zhou P (2018) Pedestrian-synthesis-GAN: generating pedestrian data in real scene and beyond. Available: http://arxiv.org/abs/1804.02047
Li X et al (2017) A unified framework for concurrent pedestrian and cyclist detection. IEEE Trans Intell Transp Syst 18(2):269–281. https://doi.org/10.1109/TITS.2016.2567418
Olmeda D, Premebida C, Nunes U, Armingol JM, De La Escalera A (2013) Pedestrian detection in far infrared images. Integr Comput Aided Eng 20(4):347–360. https://doi.org/10.3233/ICA-130441
Wu Z, Fuller N, Theriault D, Betke M (2014) A thermal infrared video benchmark for visual analysis. IEEE Comput Soc Conf Comput Vis Pattern Recogn Work. https://doi.org/10.1109/CVPRW.2014.39
Sivaraman S, Trivedi MM (2010) A general active-learning framework for on-road vehicle recognition and tracking. IEEE Trans Intell Transp Syst 11(2):267–276. https://doi.org/10.1109/TITS.2010.2040177
Zhu Z, Liang D, Zhang S, Huang X, Li B, Hu S (2016) Traffic-sign detection and classification in the wild. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn 2016:2110–2118. https://doi.org/10.1109/CVPR.2016.232
Behrendt K, Novak L, Botros R (2017) A deep learning approach to traffic lights: detection, tracking, and classification. Proc IEEE Int Conf Robot Autom. https://doi.org/10.1109/ICRA.2017.7989163
Møgelmose A, Trivedi MM, Moeslund TB (2012) Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey. IEEE Trans Intell Transp Syst 13(4):1484–1497. https://doi.org/10.1109/TITS.2012.2209421
Stallkamp J, Schlipsing M, Salmen J, Igel C (2012) Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Netw 32:323–332. https://doi.org/10.1016/j.neunet.2012.02.016
Larsson F, Felsberg M (2011) Using Fourier descriptors and spatial models for traffic sign recognition. Lect Notes Comput Sci 6688:238–249. https://doi.org/10.1007/978-3-642-21227-7_23 (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
Bonaci I, Kusalic I and Kovacek I (2011) Addressing false alarms and localization inaccuracy in traffic sign detection and recognition. In: 16Th Comput. Vis. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.225.5845&rep=rep1&type=pdf
Huang L Chinese traffic sign database. http://www.nlpr.ia.ac.cn/pal/trafficdata/index.html. Available: http://www.nlpr.ia.ac.cn/pal/trafficdata/index.html
Stallkamp J, Schlipsing M, Salmen J, Igel C (2011) The German Traffic Sign recognition benchmark: a multi-class classification competition. Proc Int Jt Conf Neural Netw 1:1453–1460. https://doi.org/10.1109/IJCNN.2011.6033395
Dosovitskiy A, Ros G, Codevilla F, Lopez A and Koltun V (2017) CARLA: an open urban driving simulator. CoRL, pp 1–16. Available: http://arxiv.org/abs/1711.03938
DRIVE Constellation—Simulation for Self Driving Cars. https://www.nvidia.com/en-in/self-driving-cars/simulation/ (accessed Jan. 14, 2022)
Deep Drive—Self Driving AI Simulator. https://deepdrive.io/ (accessed Jan. 14, 2022)
Woods JO, Christian JA (2016) GLIDAR: An open GL-based, real-time, and open source 3d sensor simulator for testing computer vision algorithms. J Imaging. https://doi.org/10.3390/jimaging2010005
Bechtold S and Höfle B (2016) Helios: a multi-purpose lidar simulation framework for research, planning and training of laser scanning operations with airborne, ground-based mobile and stationary platforms. In: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. III–3, no. July, pp 161–168. https://doi.org/10.5194/isprsannals-iii-3-161-2016.
Radar Simulator (RADSim). https://www.riversideresearch.org/what-we-do/tools/radar-simulator-radsim (accessed Jan 14, 2022)
Méndez V, Catalán H, Rosell JR, Arnó J, Sanz R, Tarquis A (2012) SIMLIDAR—simulation of LIDAR performance in artificially simulated orchards. Biosyst Eng 111(1):72–82. https://doi.org/10.1016/j.biosystemseng.2011.10.010
Udacity Open Sources—Self-Driving Car Simulator. https://techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/ (accessed Jan 14, 2022)
Waymos Simulation City for Autonomous Driving. https://blog.waymo.com/2021/06/SimulationCity.html (accessed Jan 14, 2022)
CarSim-ADAS and Automated Driving. https://www.carsim.com/ (accessed Dec 15, 2021)
Gazebo—Robot Simulation. http://gazebosim.org/ (accessed Jan 14, 2022)
SVL SIMULATOR—An end-to-end autonomous vehicle simulation platform. https://www.svlsimulator.com/ (accessed Jan 14, 2022)
Automated Driving Toolbox—MATLAB. https://in.mathworks.com/products/automated-driving.html (accessed Jan 14, 2022)
PreScan-Simulation of ADAS and active safety. https://in.mathworks.com/products/connections/product_detail/prescan.html (accessed Jan 14, 2022)
New Autonomous Mileage Reports Are Out, but Is the Data Meaningful? https://www.ttnews.com/articles/new-autonomous-mileage-reports-are-out-data-meaningful (accessed Jan 14, 2022)
Stilgoe J (2018) Machine learning, social learning and the governance of self-driving cars. Soc Stud Sci 48(1):25–56. https://doi.org/10.1177/0306312717741687
Self-driving cars more likely to drive into black people, study claims. Independent Newspaper [website] 2019. https://www.independent.co.uk/life-style/gadgets-and-tech/news/self-driving-car-crash-racial-bias-black-people-study-a8810031.html
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dewangan, D.K., Sahu, S.P. Towards the design of vision-based intelligent vehicle system: methodologies and challenges. Evol. Intel. 16, 759–800 (2023). https://doi.org/10.1007/s12065-022-00713-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12065-022-00713-2