Skip to main content
Log in

Tree optimization algorithm (TOA): a novel metaheuristic approach for solving mathematical test functions and engineering problems

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

This study presents a new metaheuristic optimization algorithm named Tree Optimization Algorithm (TOA) for solving mathematical benchmark functions and engineering problems. This algorithm, which is inspired from the growth of trees, starts from a random initial population and improves their performance according to the growth pattern of trees. Indeed, the purpose of this new optimization method is to find the highest leaf of a tree by utilizing the position of the best leaf, and also replacing yellow dried leaves by new random fresh green ones. These strategies prevent the algorithm from the premature convergence and getting stuck in local minima. This modern optimization method is evaluated by solving several mathematical test functions and a real world constrained design problem. The obtained results are compared with those of some prominent evolutionary algorithms introduced in the literature. The numerical and simulation results verify the superiority of the TOA in terms of the solution accuracy and the convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anbar D (1978) A stochastic Newton-Raphson method. J Stat Plan Inference 2:153–163

    Article  MathSciNet  MATH  Google Scholar 

  2. Aoki M (1971) Introduction to optimization techniques. fundamentals and applications of nonlinear programming. CALIFORNIA UNIV LOS ANGELES DEPT OF SYSTEM SCIENCES

  3. Akay B, Dervis K (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Int Manufact 23.4(2012):1001–1014

  4. Askari Q, Saeed M, Younas I (2020) Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst Appl 161:113702

    Article  Google Scholar 

  5. Askari Q, Younas I, Saeed M (2020) Political optimizer: a novel socio-inspired meta-heuristic for global optimization. Knowl-Based Syst 195:105709

    Article  Google Scholar 

  6. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. 2007 IEEE congress on evolutionary computation. Ieee, 4661–4667

  7. Balinski ML (1965) Integer programming: methods, uses, computations. Manag Sci 12:253–313

    Article  MathSciNet  MATH  Google Scholar 

  8. Basturk B (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. IEEE Swarm intelligence symposium, Indianapolis, IN, USA, 2006

  9. Bellman R (1966) Dynamic programming. Science 153:34–37

    Article  MATH  Google Scholar 

  10. Bertsekas DP, Mitter SK (1971) Steepest descent for optimization problems with nondifferentiable cost functionals. MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF ELECTRICAL ENGINEERING

  11. Beyer H-G, Schwefel H-P (2002) Evolution strategies—A comprehensive introduction. Nat Comput 1:3–52

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonabeau E, Dorigo M, Marco DDRDF et al (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  13. Butler D (2010) How to plant a tree: a simple celebration of trees and tree-planting ceremonies. Penguin Publishing Group, New York

    Google Scholar 

  14. Cajori F (1911) Historical note on the Newton-Raphson method of approximation. Am Math Mon 18:29–32

    Article  MathSciNet  MATH  Google Scholar 

  15. Chakraborty B (2013) Particle swarm optimization algorithm and its hybrid variants for feature subset selection. Handbook of Research on Computational Intelligence for Engineering, Science, and Business. IGI Global, 449–466

  16. Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  17. Chu S-C, Tsai P-W, Pan J-S (2006) Cat swarm optimization. Pacific Rim international conference on artificial intelligence. Springer, 854–858

  18. Chvatal V, Chvatal V (1983) Linear programming. Macmillan, London

    MATH  Google Scholar 

  19. Coello CAC, Cortés NC (2002) An approach to solve multiobjective optimization problems based on an artificial immune system

  20. Coello CAC, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems. Springer, Berlin

    MATH  Google Scholar 

  21. De León-Aldaco SE, Calleja H, Alquicira JA (2015) Metaheuristic optimization methods applied to power converters: a review. IEEE Trans Power Electron 30:6791–6803

    Article  Google Scholar 

  22. Dhiman G, Garg M, Nagar A et al (2020) A novel algorithm for global optimization: rat swarm optimizer. J Ambient Intell Human Comput 12:1–26

    Google Scholar 

  23. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  24. Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50

    Article  Google Scholar 

  25. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybernet Part B (Cybernet) 26:29–41

    Article  Google Scholar 

  26. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. MHS'95. Proceedings of the sixth international symposium on micro machine and human science. Ieee, 39–43

  27. Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  28. Fiacco A, McCormick G (1968) Sequential Unconstrained Minimization Techniques for Nonlinear Programming. A primal dual method. Munagement Sci, 10

  29. Fogel DB, Computation E (1995) Toward a new philosophy of machine intelligence. IEEE Evolutionary Computation

  30. Fortin M, Glowinski R (1983) Augmented Lagrangian methods, volume 15 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam

  31. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  32. Gandomi AH, Yang X-S (2011) Benchmark problems in structural optimization. Computational optimization, methods and algorithms. Springer, 259–281

  33. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76:60–68

    Article  Google Scholar 

  34. Goldberg DE (1989) Genetic algorithms in search. Optimization, and MachineLearning

  35. Golinski J (1970) Optimal synthesis problems solved by means of nonlinear programming and random methods. J Mech 5:287–309

    Article  Google Scholar 

  36. Greensmith J (2007) The dendritic cell algorithm. Citeseer

  37. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11:1–18

    Article  Google Scholar 

  38. Hayyolalam V, Kazem AAP (2020) Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng Appl Artif Intell 87:103249

    Article  Google Scholar 

  39. Hedar A-R, Ahmed A (2004) Studies on metaheuristics for continuous global optimization problems

  40. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge

    Book  Google Scholar 

  41. Huang XL, Xiaomin M, Fei H (2018) Machine learning and intelligent communications. Mobile Netw Appl 23:68–70

    Article  Google Scholar 

  42. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471

    Article  MathSciNet  MATH  Google Scholar 

  43. Kaveh A, Bakhshpoori T (2016) Water evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167:69–85

    Article  Google Scholar 

  44. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Article  Google Scholar 

  45. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27

    Article  Google Scholar 

  46. Kaveh A, Seddighian M, Ghanadpour E (2020) Black Hole Mechanics optimization: a novel meta-heuristic algorithm. Asian J Civ Eng 21:1129–1149

    Article  Google Scholar 

  47. Kirkpatrick S (1984) Optimization by simulated annealing: quantitative studies. J Stat Phys 34:975–986

    Article  MathSciNet  Google Scholar 

  48. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  MATH  Google Scholar 

  49. Koza JR, Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT press, Cambridge

    MATH  Google Scholar 

  50. Kozlowski TT (1962) Tree growth. Ronald Press Company New York, New York

    Book  Google Scholar 

  51. Krishnanand K, Ghose D (2009) Glowworm swarm optimisation: a new method for optimising multi-modal functions. Int J Comput Intell Stud 1:93–119

    Google Scholar 

  52. Kuo H, Lin C (2013) Cultural evolution algorithm for global optimizations and its applications. J Appl Res Technol 11:510–522

    Article  Google Scholar 

  53. Labbi Y, Attous DB, Gabbar HA et al (2016) A new rooted tree optimization algorithm for economic dispatch with valve-point effect. Int J Electr Power Energy Syst 79:298–311

    Article  Google Scholar 

  54. Locke MH, Edahl RH, Westerberg AW (1982) An improved successive quadratic programming optimization algorithm for engineering design problems

  55. Mahmoodabadi M, Rasekh M, Zohari T (2018) TGA: team game algorithm. Future Comput Inform J 3:191–199

    Article  Google Scholar 

  56. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Eco Inform 1:355–366

    Article  Google Scholar 

  57. Mezura-Montes E, Coello CAC (2005) Useful infeasible solutions in engineering optimization with evolutionary algorithms. Mexican international conference on artificial intelligence. Springer, 652–662

  58. Mezura-Montes E, Coello Coello CA, Landa-Becerra R (2003) Engineering optimization using simple evolutionary algorithm. In: Proceedings 15th IEEE international conference on tools with artificial intelligence. IEEE

  59. Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  60. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  61. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  62. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513

    Article  Google Scholar 

  63. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  64. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program, C3P Report 826: 1989

  65. Ong P, Kohshelan S (2016) Performances of adaptive cuckoo search algorithm in engineering optimization. Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics. IGI Global, 676–699

  66. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22:52–67

    Article  Google Scholar 

  67. Pham D, Ghanbarzadeh A, Koc E, et al. (2005) The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK

  68. Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11:5508–5518

    Article  Google Scholar 

  69. Rao RV, Savsani VJ, Vakharia D (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315

    Article  Google Scholar 

  70. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  71. Ray T, Kim-Meow L (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7.4(2003):386–396

  72. Salih SQ, Alsewari AA (2020) A new algorithm for normal and large-scale optimization problems: nomadic people optimizer. Neural Comput Appl 32:10359–10386

    Article  Google Scholar 

  73. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713

    Article  Google Scholar 

  74. Sorensen K, Sevaux M, Glover F (2017) A history of metaheuristics. arXiv preprint arXiv:1704.00853

  75. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  76. Sulaiman MH, Mustaffa Z, Saari MM et al (2020) Barnacles Mating Optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng Appl Artif Intell 87:103330

    Article  Google Scholar 

  77. Tayarani-N M-H, Akbarzadeh-T M (2008) Magnetic optimization algorithms a new synthesis. 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE, 2659–2664

  78. Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (AAA) for nonlinear global optimization. Appl Soft Comput 31:153–171

    Article  Google Scholar 

  79. Venter G (2010) Review of optimization techniques. Encyclopedia of aerospace engineering

  80. Xiao L (2002) lei, SHAO Zhi\| Jiang, QIAN Ji\| Xin (Institute of Systems Engineering, Zhejiang University, Hangzhou 310027, China); An Optimizing Method Based on Autonomous Animats: Fish-swarm Algorithm [J]. Systems Engineering-theory & Practice 11

  81. Yang J, Soh CK (1997) Structural optimization by genetic algorithms with tournament selection. J Comput Civ Eng 11:195–200

    Article  Google Scholar 

  82. Yang X-S. (2009) Firefly algorithms for multimodal optimization. International symposium on stochastic algorithms. Springer, 169–178

  83. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2:78–84

    Article  Google Scholar 

  84. Yang X-S (2010b) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, 65–74

  85. Yang X-S (2011) Metaheuristic optimization: algorithm analysis and open problems. International Symposium on Experimental Algorithms. Springer, 21–32

  86. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. 2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, 210–214

  87. Yilmaz S, Sen S. (2019) Electric fish optimization: a new heuristic algorithm inspired by electrolocation. Neural Computing and Applications. 1–36

  88. Zaldivar D, Morales B, Rodríguez A et al (2018) A novel bio-inspired optimization model based on yellow saddle goatfish behavior. Biosystems 174:1–21

    Article  Google Scholar 

  89. Zhang Y, Guizani M (2011) Game theory for wireless communications and networking. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  90. Zhan Z-H, Zhang J, Li Y et al (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybernet Part B (Cybernet) 39:1362–1381

    Article  Google Scholar 

  91. Zhang X, Huang S, Hu Y et al (2013) Solving 0–1 knapsack problems based on amoeboid organism algorithm. Appl Math Comput 219:9959–9970

    MathSciNet  MATH  Google Scholar 

  92. Zhang X, Sun B, Mei T, et al. (2010) Post-disaster restoration based on fuzzy preference relation and bean optimization algorithm. 2010 IEEE youth conference on information, computing and telecommunications. IEEE, 271–274

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Mahmoodabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodabadi, M.J., Rasekh, M. & Yahyapour, M. Tree optimization algorithm (TOA): a novel metaheuristic approach for solving mathematical test functions and engineering problems. Evol. Intel. 16, 1325–1338 (2023). https://doi.org/10.1007/s12065-022-00742-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-022-00742-x

Keywords

Navigation