Skip to main content
Log in

Hermit crab shell exchange algorithm: a new metaheuristic

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

The solution to numerous real-world problems is challenging using the in-hand deterministic approaches in the modern age. The researchers are continuously looking for new methods to deal with such tasks. The timE−bound dependency on the solutions motivates the researchers to develop approximate approaches. If the answer is not with us, nature may provide a direction for approximate solutions for various problems. A few applications have been significantly solved by algorithms inspired by the different species’ natural behavior. These naturE−inspired algorithms are developed based on the survival strategies of the species. This study attempts to simulate the shelter searching strategy of the tropical cancer hermit crabs mathematically. The presented algorithm is called hermit crab shell exchange (HCSE). The competitiveness of the HCSE algorithm is established on three different sets of optimization functions, including various unconstrained, constrained, and engineering design optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akyol S, Alatas B (2017) Plant intelligence based metaheuristic optimization algorithms. Artif Intell Rev 47(4):417–462

    Google Scholar 

  2. Molina D, Poyatos J, Del Ser J, García S, Hussain A, Herrera F (2020) Comprehensive taxonomies of naturE−and bio-inspired optimization: inspiration versus algorithmic behavior, critical analysis recommendations. Cognitive Comput 12(5):897–939

    Google Scholar 

  3. Ho YC, Pepyne DL (2002) Simple explanation of the no-freE−lunch theorem and its implications. J Opt Theory Appl 115(3):549–570

    MathSciNet  Google Scholar 

  4. Lancaster I (1988) Optimisation in the life history of the hermit crab pagurus bernhardus (l.)

  5. Arce E, Alcaraz G (2012) Shell preference in a hermit crab: comparison between a matrix of paired comparisons and a multiplE−alternative experiment. Mar Biol 159(4):853–862

    Google Scholar 

  6. Chase ID, Weissburg M, Dewitt TH (1988) The vacancy chain process: a new mechanism of resource distribution in animals with application to hermit crabs. Anim Behav 36(5):1265–1274

    Google Scholar 

  7. Hazlett BA (1987) Information transfer during shell exchange in the hermit crab Clibanarius antillensis. Anim behav 35(1):218–226

    Google Scholar 

  8. BBC Earth. Crab shell exchange

  9. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks. IEEE, vol 4, pp 1942–1948

  10. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Transact Syst Man Cybern Part B (Cybernetics) 26(1):29–41

    CAS  Google Scholar 

  11. Karaboga D et al (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer

  12. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng opt 38(2):129–154

    MathSciNet  Google Scholar 

  13. Yang XS (2009) Firefly algorithms for multimodal optimization. In: international symposium on stochastic algorithms. Springer, pp 169–178

  14. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

  15. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Modell Numer Optim 1(4):330–343

  16. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  17. Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey optimization algorithm for numerical optimization. Memet comput 6(1):31–47

    Google Scholar 

  18. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Google Scholar 

  19. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  20. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Google Scholar 

  21. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving singlE−objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Google Scholar 

  22. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  23. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Google Scholar 

  24. Abualigah L, Yousri D, Elaziz Abd M, Ewees AA, Al-Qaness MAA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250

    Google Scholar 

  25. Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose optimization algorithm. Compu Methods Appl Mech Eng 391:114570

    MathSciNet  Google Scholar 

  26. Oyelade ON, Ezugwu AES, Mohamed TIA, Abualigah L (2022) Ebola optimization search algorithm: a new naturE−inspired metaheuristic optimization algorithm. IEEE Access 10:16150–16177

    Google Scholar 

  27. Abualigah L, Elaziz Abd M, Sumari P, Geem WZ, Gandomi AH (2022) Reptile search algorithm (rsa): a naturE−inspired meta-heuristic optimizer. Expert Syst Appl 191:116158

    Google Scholar 

  28. Arindam M (2022) Termite alate optimization algorithm: a swarm-based nature inspired algorithm for optimization problems. Evoluti Intell. 1–21

  29. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Google Scholar 

  30. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Opt 11(4):341–359

    MathSciNet  Google Scholar 

  31. Beyer HG, Schwefel HP (2002) Evolution strategies-a comprehensive introduction. Nat comput 1(1):3–52

    Google Scholar 

  32. Simon D (2008) Biogeography-based optimization. IEEE Transact Evolut Comput 12(6):702–713

    Google Scholar 

  33. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Google Scholar 

  34. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Google Scholar 

  35. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf sci 222:175–184

    MathSciNet  Google Scholar 

  36. Alatas B, Bingol H (2019) A physics based novel approach for travelling tournament problem: optics inspired optimization. Inf Technol Control 48(3):373–388

    Google Scholar 

  37. Venkata RR, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Des 43(3):303–315

    Google Scholar 

  38. Ayyarao TSLV, RamaKrishna NSS, Elavarasan RM, Nishanth PM, Rambabu GS, Khan B, Alatas B (2022) War strategy optimization algorithm: a new effective metaheuristic algorithm for global optimization. IEEE Access 10:25073–25105

    Google Scholar 

  39. Yang XS (2012) Flower pollination algorithm for global optimization. In: international conference on unconventional computing and natural computation. Springer, pp 240–249

  40. Ghaemi M, Feizi-Derakhshi MR (2014) Forest optimization algorithm. Expert Syst Appl 41(15):6676–6687

    Google Scholar 

  41. Abualigah L, Diabat A, Mirjalili S, Elaziz Abd M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609

    MathSciNet  Google Scholar 

  42. Van Laarhoven PJM, Aarts EHL (1987) Simulated annealing. Simulated annealing: theory and applications, Springer, pp 7–15

  43. Betka A, Toumi A, Terki A, Hamiane M (2022) An efficient metaheuristic method based on the bittorrent communication protocol (EM-BT). Evolut Intell, 1–20

  44. Tropical hermit crab with a shell. https://innerstrength.zone/animals/hermit-crabs-linE−up-to-swap-shells-with-other-crabs/. Accessed 11 Nov 2021

  45. Hermit crabs standing in a descending order to perform shell exchange chain sequence: https://innerstrength.zone/animals/hermit-crabs-linE−up-to-swap-shells-with-other-crabs/. Accessed 12 Nov 2021

  46. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the cec, special session on real-parameter optimization. KanGAL report 2005005:2005

  47. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31(4):635–672

    MathSciNet  Google Scholar 

  48. Clerc M, Kennedy J (2011) Standard pso 2011. Particle swarm central site. http://www. particleswarm. info

  49. Mokan M, Sharma K, Sharma H, Verma C (2014) Gbest guided differential evolution. In: Industrial and information systems (ICIIS), 2014 9th international conference on, pp 1–6. IEEE

  50. Bozorg-Haddad O, Solgi M, Loáiciga HA. Shuffled frog-leaping algorithm. Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization, 133–143

  51. Venkata RR, Savsani VJ, Vakharia DP (2012) Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183(1):1–15

    MathSciNet  Google Scholar 

  52. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766

  53. Sharma A, Sharma H, Bhargava A, Sharma N, Bansal JC (2016) Optimal placement and sizing of capacitor using limaçon inspired spider monkey optimization algorithm. Memet Comput 9:1–21

    Google Scholar 

  54. Sharma A, Sharma H, Bhargava A, Sharma N (2016) Optimal power flow analysis using lévy flight spider monkey optimisation algorithm. Int J Artif Intell Soft Comput 5(4):320–352

    Google Scholar 

  55. Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan PN, Coello CCA, Deb K (2006) Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. J Appl Mech 41(8):8–31

    Google Scholar 

  56. Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. App Math Comput 217(7):3166–3173

    MathSciNet  Google Scholar 

  57. Sharma H, Bansal JC, Arya KV, Yang XS (2016) Lévy flight artificial bee colony algorithm. Int J Syst Sci 47(11):2652–2670

    Google Scholar 

  58. Rawal P, Sharma H, Sharma N (2017) A local exploitation based gravitational search algorithm. In: 2017 international conference on computer, communications and electronics (comptelix). IEEE, pp 573–579

  59. Sharma P, Sharma N, Sharma H (2017) Locally informed shuffled frog leaping algorithm. In: proceedings of sixth international conference on soft computing for problem solving, Springer, pp 141–152

  60. Sharma A, Sharma H, Bhargava A, Sharma N (2017) Fibonacci series-based local search in spider monkey optimisation for transmission expansion planning. Int J Swarm Intell 3(2–3):215–237

    Google Scholar 

  61. Priya S, Harish S, Nirmala S (2016) Fast convergent biogeography based optimization algorithm. In: 2016 international conference on advances in computing, communications and informatics (ICACCI), IEEE, pp 782–787

  62. Ros R, Hansen N (2008) A simple modification in cma-es achieving linear time and space complexity. In: international conference on parallel problem solving from nature. Springer, pp 296–305

  63. Sharma K, Chhamunya V, Gupta PC, Sharma H, Bansal JC (2015) Fitness based particle swarm optimization. Int J Syst Assur Eng Manag 6(3):319–329

    Google Scholar 

  64. Wang Y, Li JP, Xue X, Wang BC (2019) Utilizing the correlation between constraints and objective function for constrained evolutionary optimization. IEEE Transact Evolut Comput 24:29–43

    Google Scholar 

  65. Wang Y, Wang BC, Li HX, Yen GG (2015) Incorporating objective function information into the feasibility rule for constrained evolutionary optimization. IEEE Transact Cybern 46(12):2938–2952

    Google Scholar 

  66. Bansal JC, Joshi SK, Sharma H (2018) Modified global best artificial bee colony for constrained optimization problems. Comput Electr Eng 67:365–382

    Google Scholar 

  67. Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in artificial bee colony algorithm. Appl Soft Comput 11(2):2888–2901

    Google Scholar 

  68. Sharma N, Sharma H, Sharma A, Bansal JC (2018) Grasshopper inspired artificial bee colony algorithm for numerical optimisation. J Exp Theor Artif Intell 33:1–19

    Google Scholar 

  69. Karaboga D, Akay B (2011) A modified artificial bee colony (abc) algorithm for constrained optimization problems. Appl Soft Comput 11(3):3021–3031

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Sharma, N. & Sharma, H. Hermit crab shell exchange algorithm: a new metaheuristic. Evol. Intel. 17, 771–797 (2024). https://doi.org/10.1007/s12065-022-00753-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-022-00753-8

Keywords

Navigation