Skip to main content
Log in

Quantum machine learning for support vector machine classification

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Quantum machine learning aims to execute machine learning algorithms in quantum computers by utilizing powerful laws like superposition and entanglement for solving problems more efficiently. Support vector machine (SVM) is proved to be one of the most efficient classification machine learning algorithms in today’s world. Since in classical systems, as datasets become complex or mixed up, the SVM kernel approach tends to slow and might fail. Hence our research is focused to examine the execution speed and accuracy of quantum support vector machines classification compared to classical SVM classification by proper quantum feature mapping selection. As the size of the dataset becomes complex, a proper feature map has to be selected to outperform or equally perform the classification. Hence the paper focuses on the selection of the best feature map for some benchmark datasets. Additionally experimental results show that the processing time of the algorithm is considerably reduced concerning classical machine learning. For evaluation of quantum computation over the classical computer, Quantum labs from the IBMQ quantum computer cloud have been used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Yes, data and material for transparency will be made available. The datasets analyzed during the current study of Wine, HCV and Electrical Grid simulated data are available in the [40, 41]

Code availability

N/A.

References

  1. Nahmias MA, de Lima TF, Tait AN, Peng H-T, Shastri BJ, Prucnal PR (2019) Photonic multiply-accumulate operations for neural networks. IEEE J Sel Top Quantum Electron 26(1):1–18. https://doi.org/10.1109/JSTQE.2019.2941485

    Article  Google Scholar 

  2. Ji W, Liu D, Meng Y, Xue Y (2020) A review of genetic-based evolutionary algorithms in SVM parameters optimization. Evolut Intell 1–26

  3. Kramer O, Igel C, Rudolph G (2012) Evolutionary kernel machines. Springer, Berlin

    Book  Google Scholar 

  4. Wiebe N, Granade C, Ferrie C, Cory DG (2014) Hamiltonian learning and certification using quantum resources. Phys Rev Lett 112(19):190501

    Article  PubMed  Google Scholar 

  5. Wang J, Paesani S, Santagati R, Knauer S, Gentile AA, Wiebe N, Petruzzella M, O’Brien JL, Rarity JG, Laing A et al (2017) Experimental quantum hamiltonian learning. Nat Phys 13(6):551–555

    Article  Google Scholar 

  6. Ma Y-C, Yung M-H (2018) Transforming Bell’s inequalities into state classifiers with machine learning. NPJ Quantum Inf. 4(34):1–10. https://doi.org/10.1038/s41534-018-0081-3

    Article  Google Scholar 

  7. Lu S, Huang S, Li K, Li J, Chen J, Lu D, Ji Z, Shen Y, Zhou D, Zeng B (2018) Separability-entanglement classifier via machine learning. Phys Rev A 98(1):012315

    Article  CAS  Google Scholar 

  8. Bang J, Ryu J, Yoo S, Pawłowski M, Lee J (2014) A strategy for quantum algorithm design assisted by machine learning. N J Phys 16(7):073017

    Article  Google Scholar 

  9. Resch S, Karpuzcu UR (2021) Benchmarking quantum computers and the impact of quantum noise. ACM Comput Surveys (CSUR) 54(7):1–35

    Article  Google Scholar 

  10. Amin J, Sharif M, Gul N, Kadry S, Chakraborty C (2021) Quantum machine learning architecture for covid-19 classification based on synthetic data generation using conditional adversarial neural network. Cogn Comput 1–12

  11. Kannan R, Vasanthi V (2019) Machine learning algorithms with roc curve for predicting and diagnosing the heart disease. In: Soft computing and medical bioinformatics, pp 63–72. Springer, Berlin

  12. Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf AJ (2020) A systematic review on supervised and unsupervised machine learning algorithms for data science. Supervised and unsupervised learning for data science. 3–21

  13. Selim GEI, Hemdan EE-D, Shehata AM, El-Fishawy NA (2021) Anomaly events classification and detection system in critical industrial internet of things infrastructure using machine learning algorithms. Multimedi Tools Appl 80(8):12619–12640

    Article  Google Scholar 

  14. Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev Lett 103(15):150502

    Article  MathSciNet  PubMed  Google Scholar 

  15. Cai X-D, Wu D, Su Z-E, Chen M-C, Wang X-L, Li L, Liu N-L, Lu C-Y, Pan J-W (2015) Entanglement-based machine learning on a quantum computer. Phys Rev Lett 114(11):110504

    Article  PubMed  Google Scholar 

  16. Li Z, Liu X, Xu N, Du J (2015) Experimental realization of a quantum support vector machine. Phys Rev Lett 114(14):140504

    Article  PubMed  Google Scholar 

  17. Dunjko V, Briegel HJ (2018) Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep Progr Phys 81(7):074001

    Article  MathSciNet  PubMed  Google Scholar 

  18. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549(7671):195–202

    Article  CAS  PubMed  Google Scholar 

  19. Yu C-H, Gao F, Liu C, Huynh D, Reynolds M, Wang J (2019) Quantum algorithm for visual tracking. Phys Rev A 99(2):022301

    Article  CAS  Google Scholar 

  20. Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component analysis. Nat Phys 10(9):631–633

    Article  CAS  Google Scholar 

  21. Schuld M, Killoran N (2019) Quantum machine learning in feature hilbert spaces. Phys Rev Lett 122(4):040504

    Article  CAS  PubMed  Google Scholar 

  22. Rebentrost P, Mohseni M, Lloyd S (2013) Quantum support vector machine for big sata classification. Phys Rev Lett 113(13). https://doi.org/10.1103/PhysRevLett.113.130503

  23. Havlicek V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2018) Supervised learning with quantum enhanced feature spaces. https://doi.org/10.1038/s41586-019-0980-2

  24. Ahmed S (2019) Pattern recognition with quantum support vector machine (QSVM) on near term quantum processors. PhD thesis, Brac University

  25. Oliveira AC, Junior Z, Correia N (2020) Quantum noise and its importance to the quantum classical transition problem: energy measurement aspects. arXiv:2011.03122

  26. Yang J, Awan AJ, Vall-Llosera G (2019) Support vector machines on noisy intermediate scale quantum computers. arXiv:1909.11988

  27. Batra K, Zorn KM, Foil DH, Minerali E, Gawriljuk VO, Lane TR, et al (2020) Quantum machine learning for drug discovery

  28. Havenstein C, Thomas D, Chandrasekaran S (2018) Comparisons of performance between quantum and classical machine learning. SMU Data Sci Rev 1(4):11

    Google Scholar 

  29. http://www.fisica.unina.it/documents/12375590/13725484/2862_MendozzaR_16-10-2019.pdf/2fe12929-a8e7-46b7-bae8-b3f06d4c1f8f. Accessed 24 Dec 2021

  30. Saini S, Khosla P, Kaur M, Singh G (2020) Quantum driven machine learning. International J Theor Phys 59(12):4013–4024

    Article  Google Scholar 

  31. Suzuki Y, Yano H, Gao Q, Uno S, Tanaka T, Akiyama M, Yamamoto N (2020) Analysis and synthesis of feature map for kernel-based quantum classifier. Quantum Mac Intell 2(1):1–9

    Article  Google Scholar 

  32. Schuld M, Sinayskiy I, Petruccione F (2015) An introduction to quantum machine learning. Contemp Phys 56(2):172–185. https://doi.org/10.1080/00107514.2014.964942

    Article  Google Scholar 

  33. Dema B, Arai J, Horikawa K (2020) Support vector machine for multiclass classification using quantum annealers

  34. Mezquita Y, Alonso RS, Casado-Vara R, Prieto J, Corchado JM (2020) A review of k-nn algorithm based on classical and quantum machine learning. In: International symposium on distributed computing and artificial intelligence, pp 189–198. Springer, Berlin

  35. Mahato S, Goyal N, Ram D, Paul S (2020) Detection of depression and scaling of severity using six channel eeg data. J Med Syst 44:1–12

    Article  Google Scholar 

  36. Ketu S, Mishra PK (2021) Scalable kernel-based SVM classification algorithm on imbalance air quality data for proficient healthcare. Complex Intell Syst 7(5):2597–2615

    Article  Google Scholar 

  37. Villmann T, Engelsberger A, Ravichandran J, Villmann A, Kaden M (2020) Quantum-inspired learning vector quantizers for prototype-based classification. Neural Comput Appl 1–10

  38. Chen P, Yuan L, He Y, Luo S (2016) An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis. Neurocomputing 211:202–211

    Article  Google Scholar 

  39. Aaronson S (2007) The limits of quantum computers. In: International computer science symposium in Russia, pp. 4–4. Springer, Berlin

  40. Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml

  41. Schäfer B, Grabow C, Auer S, Kurths J, Witthaut D, Timme M (2016) Taming instabilities in power grid networks by decentralized control. Eur Phys J Spec Top 225(3):569–582

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank IBMQ for providing a Quantum lab to explore machine learning algorithms on cloud quantum processors.

Funding

The work presented came from the Ph.D. research undertaken at the Department of Electronics and Communication Engineering, The National Institute of Engineering, Mysuru, Karnataka, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Kavitha S S and Narasimha Kaulgud.

Corresponding author

Correspondence to S. S. Kavitha.

Ethics declarations

Conflict of interest

There is no conflict of interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, S.S., Kaulgud, N. Quantum machine learning for support vector machine classification. Evol. Intel. 17, 819–828 (2024). https://doi.org/10.1007/s12065-022-00756-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-022-00756-5

Keywords

Navigation