Skip to main content

Advertisement

Log in

Optimization of active power dispatch considering unified power flow controller: application of evolutionary algorithms in a fuzzy framework

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

This paper presents an optimal active power dispatch (OAPD) problem that, unlike common economic dispatch problems, precludes unwanted mismatches on realistic power systems. The OAPD is formulated by considering the unified power flow controller (UPFC), a versatile device from the flexible AC transmission systems. However, the resultant turns into a highly nonlinear and complex optimization problem, which requires a powerful evolutionary algorithm to determine the optimal solutions. Toward this end, this paper explores the use of comprehensive learning particle swarm optimization and differential evolution as a hybrid configuration in a fuzzy framework, called hybrid fuzzy-based improved comprehensive learning particle swarm optimization-differential evolution, to address the proposed problem. To demonstrate the performance of the proposed algorithm, a set of benchmark problems, including real-world constrained optimization problems as well as a profound analysis of Schwefel problem 2.26 are provided. Moreover, to authenticate its effectiveness in solving power and energy-related problems with quite a few decision variables, four different power systems, 3-unit, 6-unit IEEE 30-bus, 10-unit, and 40-unit systems, are implemented. The IEEE 30-bus system is opted for profoundly analyzing the performance of the proposed algorithm in handling the optimal power dispatch problem considering security constraints and UPFC device, where an enhancement, at least $74,000 saving in a 365-day horizon, in total generation cost is obtained. Simulation results also validate that evolutionary algorithms need to be improved/hybridized to achieve better equilibrium between exploration and exploitation processes in a timely manner while solving power and energy-related problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All of the data can be found in the references.

References

  1. Pourakbari-Kasmaei M, Rashidi-Nejad M (2011) An effortless hybrid method to solve economic load dispatch problem in power systems. Energy Convers Manag 52(8–9):2854–2860. https://doi.org/10.1016/j.enconman.2011.02.018

    Article  Google Scholar 

  2. Liang H, Liu Y, Li F, Shen Y (2018) A multiobjective hybrid bat algorithm for combined economic/emission dispatch. Int J Electr Power Energy Syst 101:103–115. https://doi.org/10.1016/j.ijepes.2018.03.019

    Article  Google Scholar 

  3. Naderi E, Pourakbari-Kasmaei M, Abdi H (2019) An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices. Appl Soft Comput 80:243–262

    Article  Google Scholar 

  4. Naderi E, Pourakbari-Kasmaei M, Cerna FV, Lehtonen M (2021) A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems. Int J Electr Power Energy Syst 125:106492. https://doi.org/10.1016/j.ijepes.2020.106492

    Article  Google Scholar 

  5. Acha E, Fuerte-Esquivel CR, Ambriz-perez H, Angeles-Camacho C (2004) FACTS: Modelling and simulation in power networks, Wiley, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

  6. Bhattacharjee K, Patel N (2020) A comparative study of economic load dispatch with complex non-linear constraints using salp swarm algorithm. Sci Iran Int J Sci Technol. https://doi.org/10.24200/SCI.2020.52145.2562

    Article  Google Scholar 

  7. Lv J, Li Q, Jiang Y, Wang X, Ma L (2021) Adaptive ACO-driven ICN routing mechanism with network status analysis, In: IEEE 6th international conference on computer and communication systems (ICCCS), Chengdu, China, pp 458–462, https://doi.org/10.1109/ICCCS52626.2021.9449193

  8. Gao S, Yu Y, Wang Y, Wang J, Cheng J, Zhou M (2021) Chaotic local search-based differential evolution algorithms for optimization. IEEE Trans Syst Man Cybern Syst 51(6):3954–3967. https://doi.org/10.1109/TSMC.2019.2956121

    Article  Google Scholar 

  9. Wu Z, Huang B, Tee KF, Zhang W (2021) A novel stochastic approach for static damage identification of beam structures using homotopy analysis algorithm. Sensors 21(7):2366. https://doi.org/10.3390/s21072366

    Article  Google Scholar 

  10. Dang VQ, Pei Y, Jing L, Li J (2019) Optimization of kernel method-based autoencoder using chaotic evolution algorithm, In: IEEE symposium series on computational intelligence (SSCI), Xiamen, China, pp 3025–3032, https://doi.org/10.1109/SSCI44817.2019.9002736

  11. Akyol S, Alatas B (2017) Plant intelligence based metaheuristic optimization algorithms. Artif Intell Rev 47:417–462. https://doi.org/10.1007/s10462-016-9486-6

    Article  Google Scholar 

  12. Singh N, Kumar Y (2013) Economic load dispatch with environmental emission using MRPSO, In: IEEE international advance computing conference (IACC), pp 995–999, https://doi.org/10.1109/IAdCC.2013.6514362

  13. Zhu Y et al (2013) Hierarchical economic load dispatch based on chaotic-particle swarm optimization. Int Conf Natl Comput (ICNC) 2:517–521. https://doi.org/10.1109/ICNC.2013.6818031

    Article  Google Scholar 

  14. Naderi E, Azizivahed A, Narimani H, Fathi M, Narimani MR (2017) A comprehensive study of practical economic dispatch problems by a new hybrid evolutionary algorithm. Appl Soft Comput 61:1186–1206. https://doi.org/10.1016/j.asoc.2017.06.041

    Article  Google Scholar 

  15. Bhattacharjee K, Bhattacharya A, Dey SHN (2014) Chemical reaction optimisation for different economic dispatch problems. IET Gener Transm Distrib 8(3):530–541. https://doi.org/10.1049/iet-gtd.2013.0122

    Article  Google Scholar 

  16. Altinoz OT (2019) The distributed many-objective economic/emission load dispatch benchmark problem. Swarm Evol Comput 49:102–113. https://doi.org/10.1016/j.swevo.2019.05.008

    Article  Google Scholar 

  17. Narimani H et al (2018) A multi-objective framework for multi-area economic emission dispatch. Energy 154:126–142. https://doi.org/10.1016/j.energy.2018.04.080

    Article  Google Scholar 

  18. Mandal KK, Mandal S, Bhattacharya B, Chakraborty N (2015) Non-convex emission constrained economic dispatch using a new self-adaptive particle swarm optimization technique. Appl Soft Comput 28:188–195. https://doi.org/10.1016/j.asoc.2014.11.033

    Article  Google Scholar 

  19. Fonte PM, Monteiro C, Maciel Barbosa FP (2013) Sensing cloud optimization applied to a non-convex constrained economical dispatch, In: Annual conference of the IEEE industrial electronics society, 3, 2163–2168, https://doi.org/10.1109/IECON.2013.6699466

  20. Kim MJ, Song H-Y, Park J-B, Roh J-H, Lee SU, Son S-Y (2013) An improved mean-variance optimization for nonconvex economic dispatch problems. J Electr Eng Technol 8(1):80–89. https://doi.org/10.5370/JEET.2013.8.1.080

    Article  Google Scholar 

  21. Jadoun VK, Gupta N, Swarnkar A, Niazi KR (2015) Non-convex economic load dispatch using particle swarm optimization with elevated search and addressed operators, In: International conference on recent developments in control, automation and power engineering (RDCAPE), pp 113–118, https://doi.org/10.1109/RDCAPE.2015.7281379

  22. Mahdad B, Srairi K, Bouktir T (2010) Improved parallel PSO solution to economic dispatch with practical generator constraints, In: IEEE mediterranean electrotechnical conference, pp 314–319, https://doi.org/10.1109/MELCON.2010.5476272

  23. Chiou J-P (2007) Variable scaling hybrid differential evolution for large-scale economic dispatch problems. Electr Power Syst Res 77(3–4):212–218. https://doi.org/10.1016/j.epsr.2006.02.013

    Article  Google Scholar 

  24. He D, Wang F, Mao Z (2008) Hybrid genetic algorithm for economic dispatch with valve-point effect. Electr Power Syst Res 78(4):626–633. https://doi.org/10.1016/j.epsr.2007.05.008

    Article  Google Scholar 

  25. Selvakumar AI, Thanushkodi K (2009) Optimization using civilized swarm: solution to economic dispatch with multiple minima. Electr Power Syst Res 79(1):8–16. https://doi.org/10.1016/j.epsr.2008.05.001

    Article  Google Scholar 

  26. Nadeem Malik T, Ul Asar A, Wyne MF, Akhtar S (2010) A new hybrid approach for the solution of nonconvex economic dispatch problem with valve-point effects. Electr Power Syst Res 80(9):1128–1136. https://doi.org/10.1016/j.epsr.2010.03.004

    Article  Google Scholar 

  27. Moradi-Dalvand M, Mohammadi-Ivatloo B, Najafi A, Rabiee A (2012) Continuous quick group search optimizer for solving non-convex economic dispatch problems. Electr Power Syst Res 93:93–105. https://doi.org/10.1016/j.epsr.2012.07.009

    Article  Google Scholar 

  28. Abul’Wafa AR (2013) Optimization of economic/emission load dispatch for hybrid generating systems using controlled Elitist NSGA-II. Electr Power Syst Res 105:142–151. https://doi.org/10.1016/j.epsr.2013.07.006

    Article  Google Scholar 

  29. El-sobky B, Abo-elnaga Y (2014) Multi-objective economic emission load dispatch problem with trust-region strategy. Electr Power Syst Res 108:254–259. https://doi.org/10.1016/j.epsr.2013.11.003

    Article  Google Scholar 

  30. Yare Y, Venayagamoorthy GK, Saber AY (2009) Heuristic algorithms for solving convex and nonconvex economic dispatch. Int Conf Intel Syst Appl Power Syst. https://doi.org/10.1109/ISAP.2009.5352852

    Article  Google Scholar 

  31. Vaisakh K, Reddy AS (2013) MSFLA/GHS/SFLA-GHS/SDE algorithms for economic dispatch problem considering multiple fuels and valve point loadings. Appl Soft Comput 13(11):4281–4291. https://doi.org/10.1016/j.asoc.2013.07.001

    Article  Google Scholar 

  32. Naderi E, Narimani H, Pourakbari-Kasmaei M, Cerna FV, Marzband M, Lehtonen M (2021) State-of-the-art of optimal active and reactive power flow: a comprehensive review from various standpoints. Processes. https://doi.org/10.3390/pr9081319

    Article  Google Scholar 

  33. Nagalakshmi S, Kamaraj N (2012) Comparison of computational intelligence algorithms for loadability enhancement of restructured power system with FACTS devices. Swarm Evol Comput 5:17–27. https://doi.org/10.1016/j.swevo.2012.02.002

    Article  Google Scholar 

  34. An S, Condren J, Gedra TW (2007) An ideal transformer UPFC model, OPF first-order sensitivities, and application to screening for optimal UPFC locations. IEEE Trans Power Syst 22(1):68–75. https://doi.org/10.1109/TPWRS.2006.889141

    Article  Google Scholar 

  35. Raj S, Bhattacharyya B (2018) Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm. Swarm Evol Comput 40:131–143. https://doi.org/10.1016/j.swevo.2017.12.008

    Article  Google Scholar 

  36. Azizipanah-Abarghooee R, Narimani MR, Bahmani-Firouzi B, Niknam T (2014) Modified shuffled frog leaping algorithm for multi-objective optimal power flow with FACTS devices. J Intell Fuzzy Syst 26(2):681–692. https://doi.org/10.3233/IFS-120759

    Article  Google Scholar 

  37. Sharma NK, Ghosh A, Varma RK (2003) A novel placement strategy for facts controllers. IEEE Trans Power Deliv 18(3):982–987. https://doi.org/10.1109/TPWRD.2003.813874

    Article  Google Scholar 

  38. Sharma A, Chanana S, Parida S (2005) Combined optimal Location of FACTS controllers and loadability enhancement in competitive electricity markets using MILP. IEEE Power Eng Soc General Meet. https://doi.org/10.1109/PES.2005.1489247

    Article  Google Scholar 

  39. Du W, Wu X, Wang HF, Dunn R (2010) Feasibility study to damp power system multi-mode oscillations by using a single FACTS device. Int J Electr Power Energy Syst 32(6):645–655. https://doi.org/10.1016/j.ijepes.2009.11.022

    Article  Google Scholar 

  40. Rahimzadeh S, Tavakoli Bina M (2011) Looking for optimal number and placement of FACTS devices to manage the transmission congestion. Energy Convers Manag 52(1):437–446. https://doi.org/10.1016/j.enconman.2010.07.019

    Article  Google Scholar 

  41. Lashkar Ara A, Kazemi A, Nabavi Niaki SA (2011) Modelling of optimal unified power flow controller (OUPFC) for optimal steady-state performance of power systems. Energy Convers Manag 52(2):1325–1333. https://doi.org/10.1016/j.enconman.2010.09.030

    Article  Google Scholar 

  42. Ghahremani E, Kamwa I (2014) Analysing the effects of different types of FACTS devices on the steady-state performance of the Hydro-Québec network. IET Gener Transm Distrib 8(2):233–249. https://doi.org/10.1049/iet-gtd.2013.0316

    Article  Google Scholar 

  43. Banu RN, Devaraj D (2008) Genetic algorithm approach for optimal power flow with FACTS devices. Int IEEE Conf Intel Syst. https://doi.org/10.1109/IS.2008.4670477

    Article  Google Scholar 

  44. Suresh CV, Sivanagaraju S (2015) Analysis and effect of multi-fuel and practical constraints on economic load dispatch in the presence of unified power flow controller using UDTPSO. Ain Shams Eng J 6(3):803–817. https://doi.org/10.1016/j.asej.2014.12.011

    Article  Google Scholar 

  45. Vijay Kumar YN, Sivanagaraju S, Suresh CV (2016) “Security constrained economic load dispatch in the presence of interline power flow controller using modified BAT algorithm. Ain Shams Eng J 7(4):1029–1043. https://doi.org/10.1016/j.asej.2015.07.003

    Article  Google Scholar 

  46. Singh RP, Mukherjee V, Ghoshal SP (2016) Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem. Appl Soft Comput J 40:161–177. https://doi.org/10.1016/j.asoc.2015.11.027

    Article  Google Scholar 

  47. Mukherjee A, Mukherjee V (2016) Solution of optimal power flow with FACTS devices using a novel oppositional krill herd algorithm. Int J Electr Power Energy Syst 78:700–714. https://doi.org/10.1016/j.ijepes.2015.12.001

    Article  Google Scholar 

  48. Prasad D, Mukherjee V (2016) A novel symbiotic organisms search algorithm for optimal power flow of power system with FACTS devices. Eng Sci Technol an Int J 19(1):79–89. https://doi.org/10.1016/j.jestch.2015.06.005

    Article  Google Scholar 

  49. Bhattacharyya B, Gupta VK (2014) Fuzzy based evolutionary algorithm for reactive power optimization with FACTS devices. Int J Electr Power Energy Syst 61:39–47. https://doi.org/10.1016/j.ijepes.2014.03.008

    Article  Google Scholar 

  50. Ayan K, Kiliç U (2016) Optimal power flow of two-terminal HVDC systems using backtracking search algorithm. Int J Electr Power Energy Syst 78:326–335. https://doi.org/10.1016/j.ijepes.2015.11.071

    Article  Google Scholar 

  51. Acharjee P (2016) Optimal power flow with UPFC using security constrained self-adaptive differential evolutionary algorithm for restructured power system. Int J Electr Power Energy Syst 76:69–81. https://doi.org/10.1016/j.ijepes.2015.09.025

    Article  Google Scholar 

  52. Basu M (2011) Multi-objective optimal power flow with FACTS devices. Energy Convers Manag 52(2):903–910. https://doi.org/10.1016/j.enconman.2010.08.017

    Article  Google Scholar 

  53. Niknam T, Narimani MR, Aghaei J, Azizipanah-Abarghooee R (2012) Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index. IET Gener Transm Distrib 6(6):515. https://doi.org/10.1049/iet-gtd.2011.0851

    Article  Google Scholar 

  54. L. Gyugyi (1991) Unified power flow control concept for flexible AC transmission systems, In IEE conference publication, 345, pp 19–26.

  55. Gyugyi L, Schauder CD, Williams SL, Rietman TR, Torgerson DR, Edris A (1995) The unified power flow controller: a new approach to power transmission control. IEEE Trans Power Deliv 10(2):1085–1097. https://doi.org/10.1109/61.400878

    Article  Google Scholar 

  56. Ying Xiao YH, Song, and Y. Z. Sun, (2002) Power flow control approach to power systems with embedded FACTS devices. IEEE Trans Power Syst 17(4):943–950. https://doi.org/10.1109/TPWRS.2002.804919

  57. Gyugyi L (1992) Unified power-flow control concept for flexible AC transmission systems. IEE Proc C Gener Transm Distrib 139(4):323. https://doi.org/10.1049/ip-c.1992.0048

    Article  Google Scholar 

  58. Kazemi A, Shayanfar HA, Rabiee A, Aghaie J (2005) Power system security improvement using the unified power flow controller (UPFC). IEEE Power India Conf 2005:937–941. https://doi.org/10.1109/POWERI.2006.1632632

    Article  Google Scholar 

  59. Nabavi-Niaki A, Iravani MR (1996) Steady-state and dynamic models of unified power flow controller (UPFC) for power system studies. IEEE Trans Power Syst 11(4):1937–1943. https://doi.org/10.1109/59.544667

    Article  Google Scholar 

  60. Kamel S, Jurado F, Lopes JAP (2015) Comparison of various UPFC models for power flow control. Electr Power Syst Res 121:243–251. https://doi.org/10.1016/j.epsr.2014.11.001

    Article  Google Scholar 

  61. Nayeripour M, Narimani MR, Niknam T (2011) Application of modified shuffled frog leaping algorithm on optimal power flow incorporating unified power flow controller. Int J Model Optim 1(3):191–198. https://doi.org/10.7763/ijmo.2011.v1.34

    Article  Google Scholar 

  62. Pourakbari-Kasmaei M, Rider MJ, Mantovani JRS (2016) An unambiguous distance-based MIQP model to solve economic dispatch problems with disjoint operating zones. IEEE Trans Power Syst 31(1):825–826. https://doi.org/10.1109/TPWRS.2015.2394317

    Article  Google Scholar 

  63. Pourakbari-Kasmaei M, Sanches Mantovani JR (2018) Logically constrained optimal power flow: Solver-based mixed-integer nonlinear programming model. Int J Electr Power Energy Syst 97:240–249. https://doi.org/10.1016/j.ijepes.2017.11.010

    Article  Google Scholar 

  64. Piltan S, Pourakbari-Kasmaei M, Montavani JRS, Rashidi-Nejad M (2011) An unproblematic method to solve economic and emission dispatch, In: 2011 10th international conference on environment and electrical engineering, pp 1–5, https://doi.org/10.1109/EEEIC.2011.5874819

  65. Daryani N, Hagh MT, Teimourzadeh S (2016) Adaptive group search optimization algorithm for multi-objective optimal power flow problem. Appl Soft Comput J 38:1012–1024. https://doi.org/10.1016/j.asoc.2015.10.057

    Article  Google Scholar 

  66. Naderi E, Narimani H, Fathi M, Narimani MR (2017) A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch. Appl Soft Comput J 53:441–456. https://doi.org/10.1016/j.asoc.2017.01.012

    Article  Google Scholar 

  67. Isiet M, Gadala M (2019) Self-adapting control parameters in particle swarm optimization. Appl Soft Comput 83:105653. https://doi.org/10.1016/j.asoc.2019.105653

    Article  Google Scholar 

  68. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295. https://doi.org/10.1109/TEVC.2005.857610

    Article  Google Scholar 

  69. Azizivahed A, Narimani H, Naderi E, Fathi M, Narimani MR (2017) A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration. Energy 138:355–373. https://doi.org/10.1016/j.energy.2017.07.102

    Article  Google Scholar 

  70. Fazel Zarandi MH, Sadat Asl AA, Sotudian S, Castillo O (2018) A state of the art review of intelligent scheduling. Artif Intell Rev. https://doi.org/10.1007/s10462-018-9667-6

    Article  Google Scholar 

  71. Wong KP, Dong Z (2007) Differential evolution, an alternative approach to evolutionary algorithm, Modern heuristic optimization techniques: theory and applications to power systems, pp 171–187.

  72. Li J, Cheng S (2022) Parameter settings in particle swarm optimisation algorithms: a survey. Int J Autom Control 16(2):164–182

    Article  Google Scholar 

  73. Coy SP, Golden BL, Runger GC, Wasil EA (2001) Using experimental design to find effective parameter settings for heuristics. J Heuristics 7(1):77–97. https://doi.org/10.1023/A:1026569813391

    Article  Google Scholar 

  74. Giryes R, Eldar YC, Bronstein AM, Sapiro G (2018) Tradeoffs between convergence speed and reconstruction accuracy in inverse problems. IEEE Trans Signal Process 66(7):1676–1690. https://doi.org/10.1109/TSP.2018.2791945

    Article  MathSciNet  Google Scholar 

  75. Banerjee S, Maity D, Chanda CK (2015) Teaching learning based optimization for economic load dispatch problem considering valve point loading effect. Int J Electr Power Energy Syst 73:456–464. https://doi.org/10.1016/j.ijepes.2015.05.036

    Article  Google Scholar 

  76. Niknam T, Narimani MR, Azizipanah-Abarghooee R (2012) A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect. Energy Convers Manag 58:197–206. https://doi.org/10.1016/j.enconman.2012.01.017

    Article  Google Scholar 

  77. Li Y, Wang Y, Li B (2013) A hybrid artificial bee colony assisted differential evolution algorithm for optimal reactive power flow. Int J Electr Power Energy Syst 52(1):25–33. https://doi.org/10.1016/j.ijepes.2013.03.016

    Article  Google Scholar 

  78. Basu M (2011) Economic environmental dispatch using multi-objective differential evolution. Appl Soft Comput 11(2):2845–2853. https://doi.org/10.1016/j.asoc.2010.11.014

    Article  Google Scholar 

  79. Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl 32(16):12363–12379. https://doi.org/10.1007/s00521-020-04832-8

    Article  Google Scholar 

  80. Bhattacharya A, Chattopadhyay PK (2010) Biogeography-based optimization for different economic load dispatch problems. IEEE Trans Power Syst 25(2):1064–1077. https://doi.org/10.1109/TPWRS.2009.2034525

    Article  Google Scholar 

  81. Bhattacharya A, Chattopadhyay PK (2010) Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Trans Power Syst 25(4):1955–1964. https://doi.org/10.1109/TPWRS.2010.2043270

    Article  Google Scholar 

  82. Srinivasa Reddy A, Vaisakh K (2013) Shuffled differential evolution for large scale economic dispatch. Electr Power Syst Res 96:237–245. https://doi.org/10.1016/j.epsr.2012.11.010

    Article  Google Scholar 

  83. Barisal AK, Prusty RC (2015) Large scale economic dispatch of power systems using oppositional invasive weed optimization. Appl Soft Comput 29:122–137. https://doi.org/10.1016/j.asoc.2014.12.014

    Article  Google Scholar 

  84. Ciornei I, Kyriakides E (2012) A GA-API solution for the economic dispatch of generation in power system operation. IEEE Trans Power Syst 27(1):233–242. https://doi.org/10.1109/TPWRS.2011.2168833

    Article  Google Scholar 

  85. Sedighizadeh M, Sarvi M, Naderi E (2011) Multi objective optimal power flow with FACTS devices using shuffled frog leaping algorithm. Int Rev Electr Eng 6(4):1794–1801

    Google Scholar 

  86. “Matpower MATLAB Toolbox.” [Online]. https://matpower.org/

  87. Ghasemi M, Ghavidel S, Rahmani S, Roosta A, Falah H (2014) A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions. Eng Appl Artif Intell 29:54–69. https://doi.org/10.1016/j.engappai.2013.11.003

    Article  Google Scholar 

  88. Mostafa A, Ebeed M, Kamel S, Abdel-Moamen MA (2021) Optimal power flow solution using levy spiral flight equilibrium optimizer with incorporating CUPFC. IEEE Access 9:69985–69998. https://doi.org/10.1109/ACCESS.2021.3078115

    Article  Google Scholar 

  89. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci (Ny) 180(10):2044–2064. https://doi.org/10.1016/j.ins.2009.12.010

    Article  Google Scholar 

  90. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92. https://doi.org/10.1214/aoms/1177731944

    Article  MathSciNet  Google Scholar 

  91. Sugantthan PN (2020) Guidelines for real-world single-objective constrained optimisation competition”. [Online]. https://github.com/P-N-Suganthan/2020-RW-Constrained-Optimisation

  92. Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, Das S (2020) A test-suite of non-convex constrained optimization problems from the real-world and some baseline results, Swarm and evolutionary computation, p 100693

  93. Gurrola-Ramos J, Hernàndez-Aguirre A, Dalmau-Cedeño O (2020) COLSHADE for real-world single-objective constrained optimization problems, In: IEEE congress on evolutionary computation (CEC), Glasgow, UK, pp 1–8, https://doi.org/10.1109/CEC48606.2020.9185583

  94. Hellwig M, Beyer HG (2020) A modified matrix adaptation evolution strategy with restarts for constrained real-world problems, In: IEEE congress on evolutionary computation (CEC), Glasgow, UK, pp.1–8, https://doi.org/10.1109/CEC48606.2020.9185566

  95. Alatas B, Bingol H (2020) Comparative assessment of light-based intelligent search and optimization algorithms. Light Eng 28(6):51–59. https://doi.org/10.33383/2019-029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Naderi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Data of IEEE 30-bus Test System

All of the essential information regarding IEEE 30-bus test system are provided in Tables

Table 13 Unit’s data including non-convex cost coefficients of generators

13,

Table 14 Branch data

14,

Table 15 Load data

15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, E., Mirzaei, L., Pourakbari-Kasmaei, M. et al. Optimization of active power dispatch considering unified power flow controller: application of evolutionary algorithms in a fuzzy framework. Evol. Intel. 17, 1357–1387 (2024). https://doi.org/10.1007/s12065-023-00826-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-023-00826-2

Keywords

Navigation