Skip to main content
Log in

Unveiling the Many-Objective Dragonfly Algorithm's (MaODA) efficacy in complex optimization

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

In the field of multi-objective optimization algorithms (MOAs), a primary challenge is identifying an optimal solution that effectively converges to the true Pareto Front while maintaining a high level of diversity, especially in the initial phases of evolution. To tackle this challenge, this study introduces a novel algorithm named Many-Objective Dragonfly Algorithm (MaODA). This method incorporates reference point, niche preserve and information feedback mechanism for maintaining better balance between convergence and diversity. Through this study, the MaODA effectiveness is established by using the WFG1-WFG9 test suite for 4, 6 and 8 objectives and five real-world (RWMaOP1- RWMaOP5) design problems. The findings demonstrate that MaODA outperforms its peer many-objective algorithms’ like MaOTLBO, MaOJAYA, MaOPSO and NSGA-III in most test scenarios in terms of GD, IGD, SP, SD, HV and RT metrices. It is shown that MaODA achieves better convergence, as well as enhanced diversity and spread, compared to peers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data and software availability

The data presented in this study are available through email upon request to the corresponding author.

References 

  1. Mejía-de-Dios J-A, Rodríguez-Molina A, Mezura-Montes E (2023) Multiobjective bilevel optimization: A survey of the state-of-the-art. IEEE Trans Syst Man Cybern: Systems 53(9):5478–5490. https://doi.org/10.1109/TSMC.2023.3271125

    Article  Google Scholar 

  2. Guo X (2022) A survey of decomposition based evolutionary algorithms for many-objective optimization problems. IEEE Access 10:72825–72838. https://doi.org/10.1109/ACCESS.2022.3188762

    Article  Google Scholar 

  3. Wu J, Azarm S (2001) Metrics for quality assessment of a multiobjective design optimization solution set. J Mech Des 123(1):18–25. https://doi.org/10.1115/1.1329875

    Article  Google Scholar 

  4. Jain H, Deb K (2013) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622. https://doi.org/10.1109/TEVC.2013.2281534

    Article  Google Scholar 

  5. Wang Z, Li Q, Li G, Zhang Q (2023) Multi-objective decomposition evolutionary algorithm with objective modification-based dominance and external archive. Appl Soft Comput 149:111006. https://doi.org/10.1016/j.asoc.2023.111006

    Article  Google Scholar 

  6. Chen H, Tian Y, Pedrycz W, Wu G, Wang R, Wang L (2020) Hyperplane assisted evolutionary algorithm for many-objective optimization problems. IEEE Trans Cybernet 50(7):3367–3380. https://doi.org/10.1109/TCYB.2019.2899225

    Article  Google Scholar 

  7. Ming F, Gong W, Li S, Wang L, Liao Z (2023) Handling constrained many-objective optimization problems via determinantal point processes. Inf Sci 643:119260. https://doi.org/10.1016/j.ins.2023.119260

    Article  Google Scholar 

  8. Qasim SZ, Ismail MA (2024) MPSO: fuzzy-dominance based many-objective particle swarm optimization. Evol Intell 17:847–862. https://doi.org/10.1007/s12065-022-00761-8

    Article  Google Scholar 

  9. Ye Q, Wang Z, Zhao Y, Dai R, Wu F, Yu M (2023) A clustering-based competitive particle swarm optimization with grid ranking for multi-objective optimization problems. Sci Rep 13(1):11754. https://doi.org/10.1038/s41598-023-38529-4

    Article  Google Scholar 

  10. Liu Y, Gong D, Sun J, Jin Y (2017) A many-objective evolutionary algorithm using a one-by-one selection strategy. IEEE Trans Cybernet 47(9):2689–2702. https://doi.org/10.1109/TCYB.2016.2638902

    Article  Google Scholar 

  11. Li M, Yang S, Liu X (2014) Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans Evol Comput 18(3):348–365. https://doi.org/10.1109/TEVC.2013.2262178

    Article  Google Scholar 

  12. Elarbi M, Bechikh S, Gupta A, Ben Said L, Ong Y-S (2018) A new decomposition-based NSGA-II for many-objective optimization. IEEE Trans Syst Man Cybernet: Systems 48(7):1191–1210. https://doi.org/10.1109/TSMC.2017.2654301

    Article  Google Scholar 

  13. Tian Y, Cheng R, Zhang X, Su Y, Jin Y (2019) A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization. IEEE Trans Evol Comput 23(2):331–345. https://doi.org/10.1109/TEVC.2018.2866854

    Article  Google Scholar 

  14. Shen J, Wang P, Wang X (2022) A controlled strengthened dominance relation for evolutionary many-objective optimization. IEEE Trans Cybernet 52(5):3645–3657. https://doi.org/10.1109/TCYB.2020.3015998

    Article  MathSciNet  Google Scholar 

  15. Zhang Q, Li H (2007) MOEA/D A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  16. Liu H, Gu F, Zhang Q (2014) Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans Evol Comput 18(3):450–455. https://doi.org/10.1109/TEVC.2013.2281533

    Article  Google Scholar 

  17. Zhang W, Liu J, Tan S, Wang H (2023) A decomposition-rotation dominance based evolutionary algorithm with reference point adaption for many-objective optimization. Expert Syst Appl 215:119424. https://doi.org/10.1016/j.eswa.2022.119424

    Article  Google Scholar 

  18. Mane SU, Narsingrao MR, Patil VC (2018) A many-objective Jaya algorithm for many-objective optimization problems. Decis Sci Lett 7(4):567–582. https://doi.org/10.5267/j.dsl.2017.11.001

    Article  Google Scholar 

  19. Jangir P, Manoharan P, Pandya S, Sowmya R (2023) MaOTLBO: Many-objective teaching-learning-based optimizer for control and monitoring the optimal power flow of modern power systems. Int J Ind Eng Comput MaOTLBO 14(2):293–308. https://doi.org/10.5267/j.ijiec.2023.1.003

    Article  Google Scholar 

  20. Figueiredo EMN, Ludermir TB, Bastos-Filho CJA (2016) Many objective particle swarm optimization. Inf Sci 374:115–134. https://doi.org/10.1016/j.ins.2016.09.026

    Article  Google Scholar 

  21. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601. https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  22. Zhang L, Wang L, Pan X, Qiu Q (2023) A reference vector adaptive strategy for balancing diversity and convergence in many-objective evolutionary algorithms. Appl Intell 53(7):7423–7438. https://doi.org/10.1007/s10489-022-03545-w

    Article  Google Scholar 

  23. Bao C, Gao D, Gu W, Xu L, Goodman ED (2023) A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization. Expert Syst Appl 213:119080. https://doi.org/10.1016/j.eswa.2022.119080

    Article  Google Scholar 

  24. Ge H, Zhao M, Sun L, Wang Z, Tan G, Zhang Q, Chen CLP (2019) A many-objective evolutionary algorithm with two interacting processes: Cascade clustering and reference point incremental learning. IEEE Trans Evol Comput 23(4):572–586. https://doi.org/10.1109/TEVC.2018.2874465

    Article  Google Scholar 

  25. Hong R, Yao F, Liao T, Xing L, Cai Z, Hou F (2023) Growing neural gas assisted evolutionary many-objective optimization for handling irregular Pareto fronts. Swarm Evol Comput 78:101273. https://doi.org/10.1016/j.swevo.2023.101273

    Article  Google Scholar 

  26. Sri Srinivasa Raju M, Mallipeddi R, Das KN (2022) A twin-archive guided decomposition based multi/many-objective evolutionary algorithm. Swarm Evol Comput 71:101082. https://doi.org/10.1016/j.swevo.2022.101082

    Article  Google Scholar 

  27. Li G, Wang G, Xiao R (2022) A novel adaptive weight algorithm based on decomposition and two-part update strategy for many-objective optimization. Inf Sci 615:323–347. https://doi.org/10.1016/j.ins.2022.09.057

    Article  Google Scholar 

  28. Wu Y, Wei J, Ying W, Lan Y, Cui Z, Wang Z (2022) A collaborative decomposition-based evolutionary algorithm integrating normal and penalty-based boundary intersection methods for many-objective optimization. Inf Sci 616:505–525. https://doi.org/10.1016/j.ins.2022.10.136

    Article  Google Scholar 

  29. Wang M, Li X, Dai Y, Chen L, Chen H, Ruiz R (2023) An incremental learning evolutionary algorithm for many-objective optimization with irregular Pareto fronts. Inf Sci 642:119115. https://doi.org/10.1016/j.ins.2023.119115

    Article  Google Scholar 

  30. Kouka N, BenSaid F, Fdhila R, Fourati R, Hussain A, Alimi AM (2023) A novel approach of many-objective particle swarm optimization with cooperative agents based on an inverted generational distance indicator. Inf Sci 623:220–241. https://doi.org/10.1016/j.ins.2022.12.021

    Article  Google Scholar 

  31. Ishibuchi H, Pang LM, Shang K (2023) Effects of dominance modification on hypervolume-based and IGD-based performance evaluation results of NSGA-II. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 679–687). https://doi.org/10.1145/3583131.3590437

  32. Liu S, Wang H, Yao W, Peng W (2023) Surrogate-assisted environmental selection for fast hypervolume-based many-objective optimization. IEEE Trans Evol Comput 1–1. https://doi.org/10.1109/TEVC.2023.3243632

  33. Li F, Li Tj, Zhang S-N (2019) R2 indicator and objective space partition based evolutionary algorithm for many-objective optimization IEEE Symposium Series on Computational Intelligence (SSCI). IEEE Publications. https://doi.org/10.1109/SSCI44817.2019.9002816

  34. Tian Y, Zhang X, Cheng R, Jin Y. (2016) A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. In 2016 IEEE congress on evolutionary computation (CEC), pp. 5222–5229. IEEE.  https://doi.org/10.1109/CEC.2016.7748352

  35. Tian Y, Cheng R, Zhang X, Cheng F, Jin Y (2018) An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans Evol Comput 22(4):609–622. https://doi.org/10.1109/TEVC.2017.2749619

    Article  Google Scholar 

  36. Pamulapati T, Mallipeddi R, Suganthan PN, ISDE (2019) $I_{\rm SDE}$ +—An Indicator for multi and many-objective optimization. IEEE Trans Evol Comput 23(2):346–352. https://doi.org/10.1109/TEVC.2018.2848921

    Article  Google Scholar 

  37. Gu Q, Zhou Q, Wang Q, Xiong NN (2023) An indicator preselection based evolutionary algorithm with auxiliary angle selection for many-objective optimization. Inf Sci 638:118996. https://doi.org/10.1016/j.ins.2023.118996

    Article  Google Scholar 

  38. Falcon-Cardona JG (2021) C.A.C. Coello, Indicator-based multi-objective evolutionary algorithms: A comprehensive survey. ACM Comput Surv 53(2):1–35

    Article  Google Scholar 

  39. Deb K, Lopes C. Ld V, Martins FVC, Wanner EF (2023) Identifying Pareto fronts reliably using a multi-stage reference-vector-based framework. IEEE Trans Evol Comput 1–1. https://doi.org/10.1109/TEVC.2023.3246922

  40. Ma L, Huang M, Yang S, Wang R, Wang X (2022) An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization. IEEE Trans Cybernet 52(7):6684–6696. https://doi.org/10.1109/TCYB.2020.3041212

    Article  Google Scholar 

  41. Hassan BA, Rashid TA (2021) A multidisciplinary ensemble algorithm for clustering heterogeneous datasets. Neural Comput Appl 33(17):10987–11010

    Article  Google Scholar 

  42. Hassan BA, Rashid TA, Mirjalili S (2021) Formal context reduction in deriving concept hierarchies from corpora using adaptive evolutionary clustering algorithm star. Complex Intell Syst 7(5):2383–2398

    Article  Google Scholar 

  43. Gao C, Li W, He L, Zhong L (2024) A distance and cosine similarity-based fitness evaluation mechanism for large-scale many-objective optimization. Eng Appl Artif Intell 133:108127

    Article  Google Scholar 

  44. Zhang H, Gan J, Zhou J, Gao W (2024) Rank-based multimodal immune algorithm for many-objective optimization problems. Eng Appl Artif Intell 133:108153

    Article  Google Scholar 

  45. Li T, Chen L, Lai Y, Liu HL (2024) Transfer learning-based covariance matrix adaptation for evolutionary many-objective optimization. Expert Syst Appl 246:123272

    Article  Google Scholar 

  46. Li L, Chai Z, Li Y, Cheng Y, Nie Y (2024) Many-objective multi-tasking optimization using adaptive differential evolutionary and reference-point based nondominated sorting. Expert Syst Appl 248:123336

    Article  Google Scholar 

  47. Prokop K, Połap D (2024) Heuristic-based image stitching algorithm with automation of parameters for smart solutions. Expert Syst Appl 241:122792

    Article  Google Scholar 

  48. Polap D, Prokop K, Srivastava G (2023) Federated heuristic optimization based on fuzzy clustering and red fox optimization algorithm. In 2023 IEEE International Conference on Fuzzy Systems (FUZZ) (pp. 1–6). IEEE

  49. Mirjalili S (2016) Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  MathSciNet  Google Scholar 

  50. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506. https://doi.org/10.1109/TEVC.2005.861417

    Article  Google Scholar 

  51. Tanabe R, Ishibuchi H (2020) An easy-to-use real-world multi-objective optimization problem suite. Appl Soft Comput 89:106078. https://doi.org/10.1016/j.asoc.2020.106078

    Article  Google Scholar 

  52. Panagant N, Kumar S, Tejani GG, Pholdee N, Bureerat S (2023) Many objective meta-heuristic methods for solving constrained truss optimisation problems: A comparative analysis. MethodsX 10:102181. https://doi.org/10.1016/j.mex.2023.102181

    Article  Google Scholar 

  53. Ahmad N, Kamal S, Raza ZA, Hussain T (2017) Multi-objective optimization in the development of oil and water repellent cellulose fabric based on response surface methodology and the desirability function. Mater Res Express 4(3):035302. https://doi.org/10.1088/2053-1591/aa5f6a

    Article  Google Scholar 

  54. Chen Y-S (2017) Performance enhancement of multiband antennas through a two-stage optimization technique. Int J RF MicrowComput-Aided Eng 27(2):e21064. https://doi.org/10.1002/mmce.21064

    Article  Google Scholar 

  55. Goel T, Vaidyanathan R, Haftka RT, Shyy W, Queipo NV, Tucker K (2007) Response surface approximation of Pareto optimal front in multi-objective optimization. Comput Methods Appl Mech Eng 196(4–6):879–893. https://doi.org/10.1016/j.cma.2006.07.010

    Article  Google Scholar 

  56. Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems. Genetic And Evolutionary Computation Series (2nd ed). Springer

Download references

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Kanak Kalita, Pradeep Jangir, Sundaram B. Pandya;

Formal analysis, Kanak Kalita, Pradeep Jangir, Sundaram B. Pandya;

Investigation, Kanak Kalita, Pradeep Jangir, Sundaram B. Pandya;

Methodology, Kanak Kalita, Pradeep Jangir, Sundaram B. Pandya, G. Shanmugasundar, Laith Abualigah;

Software, Kanak Kalita, Pradeep Jangir, Sundaram B. Pandya, G. Shanmugasundar, Laith Abualigah;

Writing – Kanak Kalita, Pradeep Jangir, Sundaram B. Pandya, G. Shanmugasundar, Laith Abualigah;

Writing – review & editing, Kanak Kalita, Pradeep Jangir, Sundaram B. Pandya, G. Shanmugasundar, Laith Abualigah.

All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kanak Kalita.

Ethics declarations

Institutional review board statement

Not applicable.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 291 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, K., Jangir, P., Pandya, S.B. et al. Unveiling the Many-Objective Dragonfly Algorithm's (MaODA) efficacy in complex optimization. Evol. Intel. 17, 3505–3533 (2024). https://doi.org/10.1007/s12065-024-00942-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-024-00942-7

Keywords