Skip to main content
Log in

A decentralised service composition approach for peer-to-peer video delivery

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Recent platforms for Peer-to-Peer (P2P) based video distribution such as Zattoo and Joost are based on End-Host or Application Layer Multicast techniques. An on demand adaptation of audio/video data to end user terminals or to the transport and error characteristics of the client access technology is not supported. To address such issues in the scale of P2P Networks, we describe a cooperative service provisioning principle (CSP) based on the assumption that selected peers offer processing services to the community. In contrast to recent approaches our main focus in this paper is on the applicability of QoS estimation techniques to decrease time and measurement complexity of CSP. We provide a state of the art in landmark-based delay estimation and introduce a novel technique for landmark-based bottleneck bandwidth prediction showing favourable results for networks with widest path routing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kleis M, Büttner K, Elmoumouhi S, Carle G, Salaün M (2007) CSP cooperative service provisioning using peer-to-peer principles. In: IProceedings of international workshop on self-organizing systems (IWSOS), The Lake District, pp 73–87

  2. Gu X, Nahrstedt K, Chang R, Ward C (2003) QoS-assured service composition in managed service overlay networks. In: Proceedings of IEEE 23rd international conference on distributed computing systems (ICDCS), Providence, pp 194–203

  3. Jin J, Nahrstedt K (2004) Source-based qos service routing in distributed service networks. In: Proceedings of IEEE international conference on communications, Paris, pp 2036–2041

  4. Xu D, Nahrstedt K (2002) Finding service paths in a media service proxy network. In: Proceedings of the ACM/SPIE conference on multimedia computing and networking, San Jose, pp 172–185

  5. Ambient Networks Project (2008) http://www.ambient-networks.org/

  6. Gu X, Nahrstedt K, Yu B (2004) SpiderNet: an integrated peer-to-peer service composition framework. In: Proceedings of 13th IEEE international symposium on high performance distributed computing (HPDC), Honolulu, pp 110–119

  7. Korkmaz T, Krunz M (2001) Multi-constrained optimal path selection. In: Proceedings of IEEE INFOCOM, Anchorage

  8. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco

    MATH  Google Scholar 

  9. Gu X, Nahrstedt K (2002) Dynamic QoS-Aware multimedia service configuration in ubiquitous computing environments. In: Proceedings of IEEE 22nd international conference on distributed computing systems (ICDCS), Vienna, pp 311–318

  10. Liang J, Gu X, Nahrstedt K (2007) Self-configuring information management for large-scale service overlays. In: Proceedings of IEEE INFOCOM, Anchorage

  11. Liang J, Nahrstedt K (2005) Service composition for advanced multimedia applications. In: Proceedings of SPIE/ ACM multimedia computing and networking conference (MMCN), San Jose, pp 228–240

  12. Choi S, Turner J, Wolf T (2001) Configuring sessions in programmable networks. In: Proceedings of IEEE INFOCOM, Anchorage, pp 60–66

  13. Wang M, Li B, Li Z (2004) sFlow: towards resource-efficient and agile service federation in service overlay networks. In: Proceedings of the 24th international conference on distributed computing systems (ICDCS’04), Washington DC, pp 628–635

  14. Gu X, Nahrstedt K (2006) Distributed multimedia service composition with statistical QoS assurances. IEEE Trans Multimedia 8(1):141–151. doi:10.1109/TMM.2005.861284

    Article  Google Scholar 

  15. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) A scalable content addressable network. In: Proceedings of ACM SIGCOMM, San Diego, pp 161–172

  16. Francis P, Jamin S, Paxson V, Zhang L, Gryniewiczand DF, Jin Y (1999) An architecture for a global internet host distance estimation service. In: Proceedings of IEEE INFOCOM, New York, pp 210–217

  17. Ng S, Zhang H (2002) Predicting internet network distance with coordinates-based approaches. In: Proceedings of IEEE INFOCOM, New York

  18. Costa M, Castro M, Rowstron A, Key P (2004) PIC: practical internet coordinates for distance estimation. In: Proceedings of the 24th international conference on distributed computing systems (ICDCS), Tokyo, pp 178–187

  19. Kleis M, Zhou X (2004) A placement scheme for peer-to-peer networks based on principles from geometry. In: Proceedings of the IEEE fourth international conference on peer-to-peer computing (P2P’04), Zuerich, pp 134–141

  20. Lim H, Hou JC, Choi CH (2003) Constructing internet coordinate system based on delay measurement. In: Proceedings of the ACM IMC, Miami Beach, pp 513–525

  21. Mao Y, Saul LK (2004) Modeling distance in large-scale networks by matrix factorization. In: Proceedings of ACM IMC

  22. Pias M, Crowcroft J, Wilbur S, Harris T, Bhatti S (2003) Lighthouses for scalable distributed location. In: Proceedings of the international workshop on peer-to-peer systems, Berkley, pp 278–291

  23. Tang L, Crovella M (2003) Virtual landmarks for the internet. In: Proceedings of the ACM IMC, Miami Beach, pp 143–152

  24. Elmokashfi A, Kleis M, Popescu A (2007) NetForecast: a delay prediction scheme for provider controlled networks. In: Proceedings of IEEE GLOBECOM, Washington DC, pp 502–507

  25. Dabek F, Cox R, Kaashoek F, Morris R (2004) Vivaldi: a decentralized network coordinate system. In: Proceedings of ACM SIGCOMM, Portland, pp 15–26

  26. Shavitt Y, Tankel T (2003) Big-bang simulation for embedding network distances in Euclidean space. In: Proceedings of IEEE INFOCOM, San Francisco, pp 993–1006

  27. Wong B, Slivkins A, Sirer E (2005) Meridian: a lightweight network location service without virtual coordinates. In: Proceedings of ACM SIGCOMM, Philadelphia, pp 85–96

  28. Xu Z, Sharma P, Lee SJ, Banerjee S (2005) Netvigator: scalable network proximity estimation. Tech rep HPL-2004-28R1, HP Laboratories

  29. Linial N, London E, Rabinovich Y (1995) The geometry of graphs and some of its algorithmic applications. Combinatorica 15:215–245

    Article  MATH  MathSciNet  Google Scholar 

  30. Cox TF, Cox MAA (2001) Multidimensional scaling, 2nd edn. Chapman and Hall, London

    MATH  Google Scholar 

  31. P2PSim King Data Set (2006) http://pdos.csail.mit.edu/p2psim/kingdata/

  32. Gummadi K, Saroiu S, Gribble S (2002) King: estimating latency between arbitrary internet end hosts. In: Proceedings of the 2nd ACM SIGCOMM workshop on internet measurment, Marseille, pp 5–18

  33. Zegura EW, Calvert KL, Bhattacharjee S (1996) How to model an internetwork. In: Proceedings of IEEE INFOCOM, San Francisco, pp 594–602

  34. Riedl A, Schupke D (2007) Routing optimization in IP networks utilizing additive and concave link metrics. IEEE/ ACM Trans Netw 15(5):1136–1148. doi:10.1109/TNET.2007.902546

    Article  Google Scholar 

  35. pathChirp (2008) http://www.spin.rice.edu/Software/pathChirp/

  36. Yalagandula P, Sharma P, Banerjee S, Basu S, Lee SJ (2006) S3: a scalable sensing service for monitoring large networked systems. In: INM ’06: Proceedings of the 2006 SIGCOMM workshop on Internet network management. ACM, pp 71–76. doi:http://doi.acm.org/10.1145/1162638.1162650

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kleis.

Additional information

This research has been funded by France Télécom R&D Orange labs as part of the SASCO Project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleis, M., Radier, B., Elmoumouhi, S. et al. A decentralised service composition approach for peer-to-peer video delivery. Peer-to-Peer Netw. Appl. 3, 222–236 (2010). https://doi.org/10.1007/s12083-009-0057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-009-0057-3

Keywords

Navigation