Skip to main content
Log in

Survey on hierarchical routing schemes in “flat” distributed hash tables

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

The first generation of DHT designs offered a completely flat structure of the key space that is randomly partitioned among participating DHT nodes. That has certain advantages, for example, even distribution of workload among nodes. On the other hand, grouping keys under a single authority or achieving latency guarantees for queries is difficult. To address these shortcomings, various kinds of hierarchy have been proposed over recent years. The last generation is hierarchical DHTs (HDHTs) where nodes are organized onto layers; each next layer consists of supernodes for the previous layer. In this survey paper, we thoroughly go over the evolution of DHTs from pure flat to pre-hierarchical. Our focus is on hierarchical schemes in DHT routing. We argue that their application is not restricted within HDHT designs. We sequentially built a set of design principles; each provides a base for hierarchical routing schemes. In the extreme case, application these principles leads to HDHT designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://en.wikipedia.org/wiki/Hierarchy

  2. http://www.gnutella2.com

  3. http://www.kazaa.com

  4. http://www.emule-project.net/

  5. http://www.bittorrent.com/, http://www.bittorrent.org/

  6. We do not specify such details like “in the worst case”, “with high probability”, or “expected” since they are minor in this high-level discussion.

  7. A Chord node also keeps predecessors; they are local neighbors with respect to the absolute symmetrical distance min {ρ(u,v),ρ(v,u)}.

  8. A Tapestry or a Pastry leaf set consists of 2m 0 numerically closest nodes (for the distance |v − u|): m 0 clockwise plus m 0 anticlockwise.

  9. Pastry neighborhood set consists of proximity closest nodes.

  10. In Kademlia (as in Chord) the closest successors of u are the first subsequent nodes in S 0(u) and the closest predecessors are the last subsequent nodes in S n − 1(u).

References

  1. Lua EK, Crowcroft J, Pias M, Sharma R, Lim S (2005) A survey and comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys and Tutorials 7(2):72–93

    Article  Google Scholar 

  2. Androutsellis-Theotokis S, Spinellis D (2004) A survey of peer-to-peer content distribution technologies. ACM Comput Surv 36(4):335–371

    Article  Google Scholar 

  3. Risson J, Moors T (2006) Survey of research towards robust peer-to-peer networks: search methods. Comput Networks 50(17):3485–3521

    Article  MATH  Google Scholar 

  4. Gummadi K, Gummadi R, Gribble S, Ratnasamy S, Shenker S, Stoica I (2003) The impact of DHT routing geometry on resilience and proximity. In: Proc. of ACM SIGCOMM’03. ACM Press, pp 381–394

  5. Xu J, Kumar A, Yu X (2004) On the fundamental tradeoffs between routing table size and network diameter in peer-to-peer networks. IEEE J Sel Areas Commun 22(1):151–163

    Article  MATH  Google Scholar 

  6. Manku GS (2003) Routing networks for distributed hash tables. In: PODC ’03: proc. 22nd annual symp. on principles of distributed computing. ACM, pp 133–142

  7. Li J, Stribling J, Morris R, Kaashoek MF, Gil TM (2005) A performance vs. cost framework for evaluating DHT design tradeoffs under churn. In: Proc. of IEEE INFOCOM’05, vol 1. IEEE, pp 225–236

  8. Balakrishnan H, Kaashoek MF, Karger D, Morris R, Stoica I (2003) Looking up data in P2P systems. Commun ACM 46(2):43–48

    Article  Google Scholar 

  9. Ratnasamy S, Handley PFM, Karp R, Shenker S (2001) A scalable content-addressable network. In: Proc. of ACM SIGCOMM’01. ACM Press, pp 161–172

  10. Manku GS, Bawa M, Raghavan P (2003) Symphony: distributed hashing in a small world. In: USITS’03: proc. 4th USENIX symp. on internet technologies and systems. USENIX Association, pp 127–140

  11. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: a scalable peer-to-peer lookup service for internet applications. In: Proc. of ACM SIGCOMM’01. ACM Press, pp 149–160

  12. Maymounkov P, Mazières D (2002) Kademlia: a peer-to-peer information system based on the XOR metric. In: IPTPS ’02: proc. 1st int’l workshop on peer-to-peer systems. Lecture notes in computer science, vol 2429. Springer, pp 53–65

  13. Rowstron A, Druschel P (2001) Pastry: scalable, distributed object location and routing for large-scale peer-to-peer systems. In: Middleware’01: proc. of IFIP/ACM int’l conf. on distributed systems platforms. Lecture notes in computer science, vol 2218. Springer-Verlag, pp 329–350

  14. Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD, Kubiatowicz JD (2004) Tapestry: a resilient global-scale overlay for service deployment. IEEE J Sel Areas Commun 22(1):41–53

    Article  Google Scholar 

  15. Kaashoek MF, Karger DR (2003) Koorde: a simple degree-optimal distributed hash table. In: IPTPS ’03: proc. 2nd int’l workshop on peer-to-peer systems. Lecture notes in computer science, vol 2735. Springer, pp 98–107

  16. Gai AT, Viennot L (2004) Broose: a practical distributed hashtable based on the De-Bruijn topology. In: IEEE P2P ’04: proc. 4th int’l conf. on peer-to-peer computing. IEEE Computer Society, pp 167–164

  17. Malkhi D, Naor M, Ratajczak D (2002) Viceroy: a scalable and dynamic emulation of the butterfly. In: PODC ’02: Proc. 21st annual symp. on principles of distributed computing. ACM Press, pp 183–192

  18. Abraham I, Malkhi D, Manku GS (2005) Papillon: greedy routing in rings. In: DISC ’05: proc. of 19th int. conf. on distributed computing. Lecture notes in computer science, vol 3724. Springer, pp 514–515

  19. Krishnamurthy B, Wang J, Xie Y (2001) Early measurements of a cluster-based architecture for P2P systems. In: IMW ’01: proc. 1st ACM SIGCOMM workshop on internet measurement. ACM, pp 105–109

  20. Yang B, Garcia-Molina H (2003) Designing a super-peer network. In: ICDE’03: proc. 19th int’l conf. on data engineering, pp 49–60

  21. Zhao BY, Duan Y, Joseph LHAD, Huang L, Joseph AD, Kubiatowicz JD (2002) Brocade: lAndmark routing on overlay networks. In: IPTPS ’02: proc. 1st int’l workshop on peer-to-peer systems. Lecture notes in computer science, vol 2429. Springer, pp 34–44

  22. Zhu Y, Wang H, Hu Y (2003) A super-peer based lookup in structured peer-to-peer systems. In: ISCA PDCS 2003: proc. of ISCA 16th int’l conf. on parallel and distributed computing systems, pp 465–470

  23. Freedman MJ, Mazières D (2003) Sloppy hashing and self-organizing clusters. In: IPTPS ’03: proc. 2nd int’l workshop on peer-to-peer systems. Lecture notes in computer science, vol 2735. Springer, pp 45–55

  24. Xu Z, Min R, Hu Y (2003) HIERAS: a DHT based hierarchical P2P routing algorithm. In: ICPP 2003: proc. 32nd int’l conf. on parallel processing. IEEE Computer Society, pp 187–194

  25. Garcés-Erice L, Biersack E, Felber PA, Ross KW, Urvoy-Keller G (2003) Hierarchical peer-to-peer systems. In: Euro-Par 2003: proc. of ACM/IFIP int’l conf. on parallel and distributed computing, pp 643–657

  26. Garcés-Erice L, Ross KW, Biersack EW, Felber P, Urvoy-Keller G (2003) Topology-centric look-up service. In: Group communications and charges. NGC 2003: proc. of the 5th int. workshop on networked group communication. Lecture notes in computer science, vol 2816. Springer, pp 58–69

  27. Gupta I, Birman K, Linga P, Demers A, van Renesse R (2003) Kelips: building an efficient and stable P2P DHT through increased memory and background overhead. In: IPTPS ’03: proc. 2nd int’l workshop on peer-to-peer systems. Lecture notes in computer science, vol 2735. Springer, pp 160–169

  28. Mizrak AT, Cheng Y, Kumar V, Savage S (2003) Structured superpeers: leveraging heterogeneity to provide constant-time lookup. In: WIAPP 2003: proc. 3rd IEEE workshop on internet applications, pp 104–111

  29. Gupta A, Liskov B, Rodrigues R (2004) Efficient routing for peer-to-peer overlays. In: Proc. 1st symp. on networked systems design and implementation (NSDI ’04)

  30. Fonseca P, Rodrigues R, Gupta A, Liskov B (2009) Full-information lookups for peer-to-peer overlays. IEEE Trans Parallel Distrib Syst 20(9):1339–1351

    Article  Google Scholar 

  31. Ganesan P, Gummadi K, Garcia-Molina H (2004) Canon in G major: designing DHTs with hierarchical structure. In: ICDCS ’04: proc. 24th int’l conf. on distributed computing systems. IEEE Computer Society, pp 263–272

  32. Karger DR, Ruhl M (2004) Diminished chord: a protocol for heterogeneous subgroup formation in peer-to-peer networks. In: IPTPS ’04: proc. 3rd int’l workshop on peer-to-peer systems. Lecture notes in computer science, vol 3279. Springer, pp 288–297

  33. Zhang Y, Li D, Chen L, Lu X (2008) Flexible routing in grouped DHTs. In: IEEE P2P ’08: proc. 8th int’l conf. on peer-to-peer computing. IEEE Computer Society, pp 109–118

  34. Singh A, Liu L (2004) A hybrid topology architecture for P2P systems. In: ICCCN 2004: proc. 13th int’l conf. on computer communications and networks, pp 475–480

  35. Mislove A, Druschel P (2004) Providing administrative control and autonomy in structured peer-to-peer overlays. In: IPTPS ’04: proc. 3rd int’l workshop on peer-to-peer systems. Lecture notes in computer science, vol 3279. Springer, pp 162–172

  36. Artigas MS, Lopez PG, Ahullo JP, Skarmeta AFG (2005) Cyclone: a novel design schema for hierarchical DHTs. In: IEEE P2P ’05: proc. 5th int’l conf. on peer-to-peer computing. IEEE Computer Society, pp 49–56

  37. Zoels S, Despotovic Z, Kellerer W (2006) Cost-based analysis of hierarchical DHT design. In: IEEE P2P ’06: proc. 6th int’l conf. on peer-to-peer computing. IEEE Computer Society, pp 233–239

  38. Zoels S, Despotovic Z, Kellerer W (2007) Load balancing in a hierarchical DHT-based P2P system. In: COLCOM ’07: proc. of 2007 int’l conf. on collaborative computing: networking, applications and worksharing. IEEE Computer Society, pp 353–361

  39. Zoels S, Despotovic Z, Kellerer W (2008) On hierarchical DHT systems—an analytical approach for optimal designs. Comput Commun 31(3):576–590

    Article  Google Scholar 

  40. Zoels S, Eichhorn M, Tarlano A, Kellerer W (2006) Content-based hierarchies in DHT-based peer-to-peer systems. In: SAINT workshops 2006: proc. int’l symp. on applications and the internet workshops. IEEE Computer Society, pp 105–108

  41. Tian R, Xiong Y, Zhang Q, Li B, Zhao BY, Li, X (2005) Hybrid overlay structure based on random walks. In: IPTPS ’05: proc. 4th int’l workshop on peer-to-peer systems. Lecture notes in computer science, vol 3640. Springer, pp 152–162

  42. Park K, Pack S, Kwon T (2008) Proximity based peer-to-peer overlay networks (P3ON) with load distribution. In: ICOIN 2007: int. conf. on information networking. Towards ubiquitous networking and services. Revised selected papers. Springer-Verlag, pp 234–243

  43. Joung YJ, Wang JC (2007) Chord2: a two-layer chord for reducing maintenance overhead via heterogeneity. Comput Commun 51(3):712–731

    MATH  Google Scholar 

  44. Zhang XM, Wang YJ, Li Z (2007) Research of routing algorithm in hierarchy-adaptive P2P systems. In: ISPA 2007: proc. 5th int’l symp. on parallel and distributed processing and applications. Lecture notes in computer science, vol 4742. Springer, pp 728–739

  45. Martinez-Yelmo I, Cuevas R, Guerrero C, Mauthe A (2008) Routing performance in a hierarchical DHT-based overlay network. In: PDP 2008: proc. 16th euromicro conf. on parallel, distributed and network-based processing. IEEE Computer Society, pp 508–515

  46. Martinez-Yelmo I, Bikfalvi A, Guerrero C, Rumin RC, Mauthe A (2008) Enabling global multimedia distributed services based on hierarchical DHT overlay networks. Int’l J Internet Protocol Technol (IJIPT) 3(4):234–244

    Article  Google Scholar 

  47. Martinez-Yelmo I, Guerrero C, Rumín RC, Mauthe A (2009) A hierarchical P2PSIP architecture to support skype-like services. In: PDP 2009: proc. of 17th Euromicro int. conf. on parallel, distributed and network-based processing. IEEE Computer Society, pp 316–322

  48. Guisheng Y, Jie S, Xianghui W (2008) Hierarchical small-world P2P networks. In: ICICSE ’08: proc. int’l conf. on internet computing in science and engineering. IEEE Computer Society, pp 452–458

  49. Ou Z, Harjula E, Koskela T, Ylianttila M (2010) GTPP: general truncated pyramid peer-to-peer architecture over structured DHT networks. MONET 15(5):729–749. doi:10.1007/s11036-009-0193-2

    Google Scholar 

  50. Xu Z, Zhang Z (2002) Building low-maintenance expressways for P2P systems. Techical report HPL-2002-41, HP Labs, Palo Alto

  51. Naor M, Wieder U (2007) Novel architectures for P2P applications: the continuous-discrete approach. ACM Trans Algorithms 3(3):37

    Article  MathSciNet  Google Scholar 

  52. Naor M, Wieder U (2003) A simple fault tolerant distributed hash table. In: IPTPS ’03: proc. 2nd int’l workshop on peer-to-peer systems. Lecture notes in computer science, vol 2735. Springer, pp 88–97

  53. Fraigniaud P, Gauron P. :(2006) D2B: a de Bruijn based content-addressable network. Theor Comput Sci 355(1):65–79

    Article  MathSciNet  MATH  Google Scholar 

  54. Loguinov D, Kumar A, Rai V, Ganesh S (2005) Graph-theoretic analysis of structured peer-to-peer systems: routing distances and fault resilience. IEEE/ACM Trans Netw 13(5):1107–1120

    Article  Google Scholar 

  55. Zhang H, Goel A, Govindan R (2003) Incrementally improving lookup latency in distributed hash table systems. In: Proc. 2003 ACM SIGMETRICS int’l conf. on measurement and modeling of computer systems. ACM, pp 114–125

  56. Dabek F, Li J, Sit E, Robertson J, Kaashoek MF, Morris R (2004) Designing a DHT for low latency and high throughput. In: Proc. 1st symp. on networked systems design and implementation (NSDI ’04), pp 85–98

  57. Zhao BY, Huang L, Stribling J, Joseph AD, Kubiatowicz JD (2003) Exploiting routing redundancy via structured peer-to-peer overlays. In: ICNP ’03: proc. 11th IEEE int’l conf. on network protocols, pp 246–257

  58. Castro M, Drushel P, Hu Y, Rowstron A (2003) Proximity neighbor selection in tree-based structured peer-to-peer overlays. Technical report MSR-TR-2002-52, Microsoft research

  59. Hildrum K, Kubiatowicz J (2003) Asymptotically efficient approaches to fault-tolerance in peer-to-peer networks. In: DISC ’03: proc. 17th int’l symp. on distributed computing, pp 321–336

  60. Korzun D, Nechaev B, Gurtov A (2009) Cyclic routing: generalizing lookahead in peer-to-peer networks. In: AICCSA2009: proc. 7th IEEE/ACS int’l conf. on computer systems and applications. IEEE Computer Society, pp 697–704

  61. Danezis G, Lesniewski-Laas C, Kaashoek MF, Anderson R (2005) Sybil-resistant DHT routing. In: Proc. 10th European symp. on research in computer security, pp 305–318

  62. Serbu S, Bianchi S, Kropf P, Felber P (2007) Dynamic load sharing in peer-to-peer systems: when some peers are more equal than others. IEEE Internet Computing 11(4):53–61

    Article  Google Scholar 

  63. Manku GS, Naor M, Wieder U (2004) Know thy neighbor’s neighbor: the power of lookahead in randomized P2P networks. In: STOC ’04: proc. 36th annual acm symp. on theory of computing. ACM, pp 54–63

  64. Naor M, Wieder U (2004) Know thy neighbor’s neighbor: better routing for skip-graphs and small worlds. In: IPTPS ’04: proc. 3rd int’l workshop on peer-to-peer systems. Lecture notes in computer science, vol 3279. Springer

  65. Freedman MJ, Vingralek R (2002) Efficient peer-to-peer lookup based on a distributed trie. In: IPTPS ’01: revised papers from 1st int’l workshop on peer-to-peer systems. Springer-Verlag, pp 66–75

  66. Leong B, Liskov B, Demaine E (2004) Epichord: parallelizing the Chord lookup algorithm with reactive routing state management. In: ICON 2004: proc. 12th int’l conf. on networks, pp 270–276

  67. Li J, Stribling J, Morris R, Kaashoek MF (2005) Bandwidth-efficient management of DHT routing tables. In: Proc. of the 2nd symposium on networked systems design and implementation (NSDI ’05), pp 99–114

  68. Hu J, Li M, Zheng W, Wang D, Ning N, Dong H (2004) Smartboa: constructing P2P overlay network in the heterogeneous internet using irregular routing tables. In: IPTPS ’04: proc. 3rd int’l workshop on peer-to-peer systems. Lecture Notes in Computer Science, vol 3279. Springer, pp 278–287

  69. Tang C, Buco MJ, Chang RN, Dwarkadas S, Luan LZ, So E, Ward C (2005) Low traffic overlay networks with large routing tables. SIGMETRICS Perform Eval Rev 33(1):14–25

    Article  Google Scholar 

  70. Monnerat LR, Amorim CL (2006) D1HT: a distributed one hop hash table. In: IPDPS 2006: proc. 20th IEEE int’l symp. on parallel and distributed processing. IEEE Computer Society

  71. Dabek F, Kaashoek MF, Karger D, Morris R, Stoica I (2001) Wide-area cooperative storage with CFS. In: SOSP ’01: proc. 18th ACM symp. operating systems principles. ACM Press, pp 202–215

  72. Ramasubramanian V, Sirer EG (2004) Beehive: O(1) lookup performance for power-law query distributions in peer-to-peer overlays. In: Proc. 1st symp. on networked systems design and implementation (NSDI ’04), pp 99–112

  73. Zhang H, Jin H, Zhang Q (2009) Yarqs: yet another range queries schema in DHT based P2P network. In: CIT ’09: proc. 9th IEEE int’l conf. on computer and information technology. IEEE Computer Society, pp 51–56

  74. Fiat A, Saia J (2002) Censorship resistant peer-to-peer content addressable networks. In: SODA ’02: proc. 13th annual ACM-SIAM symp. on discrete algorithms. Society for Industrial and Applied Mathematics, 94–103

  75. Saia J, Fiat A, Gribble SD, Karlin AR, Saroiu S (2002) Dynamically fault-tolerant content addressable networks. In: IPTPS ’01: revised papers from 1st int. workshop on peer-to-peer systems. Springer-Verlag, pp 270–279

  76. Shen H, Xu CZ, Chen G (2006) Cycloid: a constant-degree and lookup-efficient p2p overlay network. Perform Eval 63(3):195–216

    Article  Google Scholar 

  77. Konstantinou I, Tsoumakos D, Koziris N (2009) Measuring the cost of online load-balancing in distributed range-queriable systems. In: IEEE P2P ’09: proc. 9th int’l conf. on peer-to-peer computing. IEEE, pp 135–138

  78. Abraham I, Awerbuch B, Azar Y, Bartal Y, Malkhi D, Pavlov E (2003) A generic scheme for building overlay networks in adversarial scenarios. In: IPDPS ’03: proc. 17th int’l symp. on parallel and distributed processing. IEEE Computer Society, p 40.2

  79. Karger DR, Ruhl M (2004) Simple efficient load balancing algorithms for peer-to-peer systems. In: SPAA ’04: proc. 16th annual ACM symp. on parallelism in algorithms and architectures. ACM, pp 36–43

  80. Risson J, Harwood A, Moors T (2006) Stable high-capacity one-hop distributed hash tables. In: ISCC ’06: proc. 11th IEEE symp. on computers and communications. IEEE Computer Society, pp 687–694

  81. Aspnes J, Shah G (2003) Skip graphs. In: SODA ’03: proc. 14th annual ACM-SIAM symp. on discrete algorithms. Society for Industrial and Applied Mathematics, pp 384–393

  82. Harvey NJA, Jones MB, Saroiu S, Theimer M, Wolman A (2003) SkipNet: a scalable overlay network with practical locality properties. In: USITS’03: proc. 4th USENIX symp. on internet technologies and systems. USENIX Association

  83. Aberer K, Cudré-Mauroux P, Datta A, Despotovic Z, Hauswirth M, Punceva M, Schmidt R (2003) P-Grid: a self-organizing structured P2P system. SIGMOD Rec 32(3):29–33

    Article  Google Scholar 

  84. Li D, Lu X, Wu J (2005) FISSIONE: a scalable constant degree and low congestion DHT scheme based on Kautz graphs. In: Proc. of IEEE INFOCOM’05. IEEE, pp 1677–1688

  85. Guo D, Wu J, Chen H, Luo X (2007) Moore: an extendable peer-to-peer network based on incomplete Kautz digraph with constant degree. In: Proc. of IEEE INFOCOM’07. IEEE, pp 821–829

  86. Guo D, Liu Y, Li XY (2008) BAKE: a balanced Kautz tree structure for peer-to-peer networks. In: Proc. of IEEE INFOCOM’08. IEEE, pp 2450–2457

  87. Zhang Y, Lu X, Li D (2009) SKY: efficient peer-to-peer networks based on distributed Kautz graphs. Sci China, F Inf Sci 52(4):588–601

    Article  MathSciNet  MATH  Google Scholar 

  88. Godfrey PB, Stoica I (2005) Heterogeneity and load balance in distributed hash tables. In: Proc. of IEEE INFOCOM’05. IEEE, pp 596–606

  89. Surana S, Godfrey B, Lakshminarayanan K, Karp R, Stoica I (2006) Load balancing in dynamic structured peer-to-peer systems. Perform Eval 63(3):217–240

    Article  Google Scholar 

  90. Rufino J, Alves A, Exposto J, Pina A (2004) A cluster oriented model for dynamically balanced DHTs. In: IPDPS’04: proc. 18th int’l symp. on parallel and distributed processing. IEEE Computer Society

  91. Ratnasamy S, Handley M, Karp R, Shenker S (2002) Topologically-aware overlay construction and server selection. In: Proc. of IEEE INFOCOM’02

  92. Ratti S, Hariri B, Shirmohammadi S (2008) NL-DHT: a non-uniform locality sensitive DHT architecture for massively multi-user virtual environment applications. In: ICPADS ’08: proc. 14th IEEE int’l conf. on parallel and distributed systems. IEEE Computer Society, pp 793–798

  93. Xu Z, Mahalingam M, Karlsson M (2003) Turning heterogeneity into an advantage in overlay routing. In: Proc. of IEEE INFOCOM’03, pp 1499–1509

  94. Shen H, Xu CZ (2008) Hash-based proximity clustering for efficient load balancing in heterogeneous DHT networks. J Parallel Distrib Comput 68(5):686–702

    Article  MathSciNet  Google Scholar 

  95. Tang C, Xu Z, Dwarkadas S (2003) Peer-to-peer information retrieval using self-organizing semantic overlay networks. In: Proc. of ACM SIGCOMM’03. ACM Press, pp 175–186

  96. Wan Y, Asaka T, Takahashi T (2008) A hybrid P2P overlay network for non-strictly hierarchically categorized contents. In: CCGRID ’08: proc. 8th IEEE int’l symp. on cluster computing and the Grid. IEEE Computer Society, pp 41–48

  97. Li J, Vuong S (2005) Ontology-based clustering and routing in peer-to-peer networks. In: PDCAT ’05: proc. 6th int’l conf. on parallel and distributed computing applications and technologies. IEEE Computer Society, pp 791–795

  98. Lee J, Lee H, Kang S, Kim SM, Song J (2007) CISS: an efficient object clustering framework for DHT-based peer-to-peer applications. Comput Netw 51(4):1072–1094

    Article  MATH  Google Scholar 

  99. Zhu Y, Hu Y (2007) Efficient semantic search on DHT overlays. J Parallel Distrib Comput 67(5):604–616

    Article  MathSciNet  MATH  Google Scholar 

  100. Bharambe AR, Agrawal M, Seshan S (2004) Mercury: supporting scalable multi-attribute range queries. SIGCOMM Comput Commun Rev 34(4):353–366

    Article  Google Scholar 

  101. Bejan A, Ghosh S (2005) Self-optimizing DHTs using request profiling. In: OPODIS 2004: proc. 8th int’l conf. on principles of distributed systems. Revised selected papers. Lecture notes in computer science, vol 3544. Springer, pp 140–153

  102. Kleinberg JM (2006) Complex networks and decentralized search algorithms. In: ICM 2006: proc. int’l congress of mathematicians. European Mathematical Society

  103. Kleinberg JM (2000) The small-world phenomenon: an algorithm perspective. In: STOC ’00: proc. 32nd annual ACM symp. theory of computing. ACM Press, pp 163–170

  104. Barrière L, Fraigniaud P, Kranakis E, Krizanc D (2001) Efficient routing in networks with long range contacts. In: DISC ’01: proc. 15th int’l conf. on distributed computing. Springer-Verlag, pp 270–284

  105. Duchon P, Hanusse N, Lebhar E, Schabanel N (2006) Towards small world emergence. In: SPAA ’06: proc. 18th annual ACM symp. on parallelism in algorithms and architectures. ACM, pp 225–232

  106. Plaxton CG, Rajaraman R, Richa AW (1997) Accessing nearby copies of replicated objects in a distributed environment. In: Proc. 9th annual symp. on parallel algorithms and architectures (SPAA ’97), pp 311–320

  107. Kleinberg JM (2001) Small-world phenomena and the dynamics of information. In: NIPS: advances in neural information processing systems 14. MIT Press, pp 431–438

  108. Ng TSE, Chu YH, Rao SG, Sripanidkulchai K, Zhang H (2003) Measurement-based optimization techniques for bandwidth-demanding peer-to-peer systems. In: Proc. of IEEE INFOCOM’03, vol 3, pp 2199–2209

  109. Ledlie, J, Shneidman, J, Amis, M, Mitzenmacher M, Seltzer M (2003) Reliability- and capacity-based selection in distributed hash tables. Computer science technical report, Harvard University

  110. Chiola G, Cordasco G, Gargano L, Hammar M, Negro A, Scarano V (2009) Degree-optimal routing for P2P systems. Theor Comput Syst 45(1):43–63

    Article  MathSciNet  MATH  Google Scholar 

  111. Korzun D, Gurtov A (2008) A diophantine model of routes in structured P2P overlays. ACM SIGMETRICS Perform Eval Rev 35(4):52–61

    Article  Google Scholar 

  112. Monnerat LR, Amorim CL (2009) Peer-to-peer single hop distributed hash tables. In: Proc. of IEEE Globecom’09

  113. Risson J, Harwood A, Moors T (2009) Topology dissemination for reliable one-hop distributed hash tables. IEEE Trans Parallel Distrib Syst 20(5):680–694

    Article  Google Scholar 

  114. Roussopoulos M, Baker M (2003) CUP: controlled update propagation in peer-to-peer networks. In: Proc. of the USENIX annual technical conference, pp 167–180

  115. Kenthapadi K, Manku GS (2005) Decentralized algorithms using both local and random probes for P2P load balancing. In: SPAA ’05: proc. 17th annual ACM symp. on parallelism in algorithms and architectures. ACM, pp 135–144

  116. Ledlie J, Seltzer MI (2005) Distributed, secure load balancing with skew, heterogeneity and churn. In: Proc. of IEEE INFOCOM’05. IEEE, pp 1419–1430

  117. Castro M, Drushel P, Ganesh A, Rowstron A, Wallach DS (2002) Secure routing for structured peer-to-peer overlay networks. In: Proc. 5th USENIX symp. on operating system design and implementation (OSDI 2002). ACM Press, Boston, MA, pp 299–314

  118. Ganesan P, Bawa M, Garcia-Molina H (2004) Online balancing of range-partitioned data with applications to peer-to-peer systems. In: VLDB ’04: proc. 30th int’l conf. on very large data bases. VLDB Endowment, pp 444–455

  119. Vu QH, Ooi BC, Rinard M, Tan KL (2009) Histogram-based global load balancing in structured peer-to-peer systems. IEEE Trans Knowl Data Eng 21(4):595–608

    Article  Google Scholar 

  120. Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D (1997) Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the world wide web. In: STOC ’97: proc. 29th annual ACM symp. on theory of computing. ACM, pp 654–663

  121. Aspnes J, Wieder U (2005) The expansion and mixing time of skip graphs with applications. In: SPAA ’05: proc. 17th annual ACM symp. on parallelism in algorithms and architectures. ACM, pp 126–134

  122. Harvey NJA, Munro JI (2004) Deterministic SkipNet. Inf Process Lett 90(4):205–208

    Article  MathSciNet  MATH  Google Scholar 

  123. Aspnes J, Kirsch J, Krishnamurthy A (2004) Load balancing and locality in range-queriable data structures. In: PODC ’04: proc. 23rd annual ACM symp. on principles of distributed computing. ACM, pp 115–124

  124. Hengkui W, Fuhong L, Hongke Z (2009) Reducing maintenance overhead via heterogeneity in skip graphs. In: IC-BNMT ’09: proc. 2nd IEEE int’l conf. on broadband network & multimedia technology. IEEE, pp 638–642

  125. Jacob R, Richa A, Scheideler C, Schmid S, Täubig H (2009) A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: PODC ’09: proc. 28th ACM symp. on principles of distributed computing. ACM, pp 131–140

  126. Huang X, Chen L, Huang L, Li M (2005) Routing algorithm using SkipNet and small-world for peer-to-peer system. In: GCC 2005: proc. 4th int’l conf. on grid and cooperative computing. Lecture Notes in Computer Science, vol 3795. Springer, pp 984–989

  127. Fujita S, Ohtsubo A, Mito M (2005) Extended skip graphs for efficient key search in P2P environment. In: ISPAN ’05: proc. 8th int’l symp. on parallel architectures,algorithms and networks. IEEE Computer Society, pp 256–261

  128. Zatloukal KC, Harvey NJA (2004) Family trees: an ordered dictionary with optimal congestion, locality, degree, and search time. In: SODA ’04: proc. 15th annual ACM-SIAM symp. on discrete algorithms. Society for Industrial and Applied Mathematics, pp 308–317

  129. Goodrich MT, Nelson MJ, Sun JZ (2006) The rainbow skip graph: a fault-tolerant constant-degree distributed data structure. In: SODA ’06: proc. 17th annual ACM-SIAM symp. on discrete algorithm. ACM, pp 384–393

  130. Awerbuch B, Scheideler C (2003) Peer-to-peer systems for prefix search. In: PODC ’03: proc. 21st annual symp. on principles of distributed computing. ACM, pp 123–132

  131. Guerraoui R, Handurukande SB, Huguenin K, Kermarrec AM, Le Fessant F, Riviere E (2006) Gosskip, an efficient, fault-tolerant and self organizing overlay using gossip-based construction and skip-lists principles. In: IEEE P2P ’06: proc. 6th int’l conf. on peer-to-peer computing. IEEE Computer Society, pp 12–22

  132. Arge L, Eppstein D, Goodrich MT (2005) Skip-webs: efficient distributed data structures for multi-dimensional data sets. In: PODC ’05: proc. 24th annual ACM symp. on principles of distributed computing. ACM, pp 69–76

  133. Zhou G, Yu J (2009) pService: towards similarity search on peer-to-peer web services discovery. In: Conf. on advances in P2P systems. IEEE Computer Society, pp 111–115

  134. Datta A, Girdzijauskas S, Aberer K (2004) On de bruijn routing in distributed hash tables: there and back again. In: IEEE P2P ’04: proc. 4th int. conf. on peer-to-peer computing. IEEE Computer Society, pp 159–166

    Google Scholar 

  135. Wepiwe G, Simeonov PL (2005) A concentric multi-ring overlay for highly reliable P2P networks. In: NCA ’05: proc. 4th IEEE int’l symp. on network computing and applications. IEEE Computer Society, pp 83–90

  136. Zhang Y, Liu L, Li D, Lu X (2008) Distributed line graphs: a universal framework for building DHTs based on arbitrary constant-degree graphs. In: ICDCS 2008: proc. 28th IEEE int’l conf. on distributed computing systems. IEEE Computer Society, pp 152–159

  137. Liu B, Lee WC, Lee DL (2005) Supporting complex multi-dimensional queries in P2P systems. In: ICDCS ’05: proc. 25th IEEE int’l conf. on distributed computing systems. IEEE Computer Society, pp 155–164

  138. Korzun D, Gurtov A (2009) A local equilibrium model for P2P resource ranking. ACM SIGMETRICS Perform. Eval. Rev. 37(2):27–29

    Article  Google Scholar 

  139. Yu Q, Xu T, Ye B, Lu S, Chen D (2009) SkipStream: a clustered skip graph based on-demand streaming scheme over ubiquitous environments. In: ICPP ’09: proc. 2009 int’l conference on parallel processing. IEEE Computer Society, pp 269–276

  140. Akers SB, Krishnamurthy B (1989) A group-theoretic model for symmetric interconnection networks. IEEE Trans Comput 38(4):555–566

    Article  MathSciNet  MATH  Google Scholar 

  141. Qu C, Nejdl W, Kriesell M (2004) Cayley DHTs—a group-theoretic framework for analyzing DHTs based on Cayley graphs. In: ISPA 2004: proc. 2nd int’l symp. on parallel and distributed processing and applications. Lecture notes in computer science, vol 3358. Springer, pp 914–925

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Gurtov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korzun, D., Gurtov, A. Survey on hierarchical routing schemes in “flat” distributed hash tables. Peer-to-Peer Netw. Appl. 4, 346–375 (2011). https://doi.org/10.1007/s12083-010-0093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-010-0093-z

Keywords

Navigation