Skip to main content
Log in

Secure and efficient fine-grained multiple file sharing in cloud-assisted crowd sensing networks

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Mobile crowd sensing significantly facilitates a broad range of emerging applications by treating mobile devices of ordinary users as basic sensing units to distribute sensing tasks and collect sensing data. Owing to the continuity of data sensing and richness of content, resource-constrained mobile devices always outsource their collected data into the cloud for file sharing. The existing work enables only batch decryption limited to RSA algorithm and merely allows one specific file to be shared among multiple authorized receivers by exploiting the technique of attribute-based encryption (ABE). In this paper, a generalized efficient batch cryptosystem GBC and its extension GBCS are firstly proposed to achieve both batch encryption and batch decryption from any public key encryption algorithm. Then, our proposed GBC is further extended to FMFS, TMFS and MMFS to address secure multiple file sharing in the cloud-assisted mobile crowd sensing network, respectively for fine-grained multi-receiver multi-file sharing, file authority transfer and multiple file owners’s settings. Finally, formal security proof is given to show our proposed generalized efficient batch cryptosystems GBC, GBCS and secure multiple file sharing schemes are respectively secure against adaptive chosen ciphertext attack (CCA2) in the random oracle model and under the assumption on the computational hardness of the subset decision problem in the standard model. Extensive evaluations illustrate our secure multiple file sharing in cloud-assisted crowd sensing network based on the newly-devised GBC dramatically outperforms the state-of-the-art in storage, computational and communication overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sandhu R, Samarati P (1994) Access control: principles and practice. IEEE Commun 32(9):40–48

    Article  Google Scholar 

  2. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I, Zaharia M (2009) Above the clouds: a Berkeley view of cloud computing, University of California, Berkerley, Tech. Rep. USB-EECS-2009-28

  3. Harney H, Colgrove A, McDaniel PD (2001) Principles of policy in secure groups. In: NDSS

  4. McDaniel PD, Prakash A (2002) Methods and limitations of security policy reconciliation. In: IEEE symposium on security and privacy ’02

  5. Goh E, Shacham H, Modadugu N, Boneh D (2003) Sirius: securing remote untrusted storage. In: Proc. of NDSS ’03

  6. Wang Q, Wang C, Li J, Ren K, Lou W (2009) Enabling public verifiability and data dynamics for storage security in cloud computing. In: Proc. of ESORICS ’09

  7. Bertino E, Khan L, Sandhu R, Thuraisingham B (2006) Secure knowledge management: confidentiality, trust and privacy. IEEE Trans Syst Man Cybern Part A Syst Humans 36(3):429– 438

    Article  Google Scholar 

  8. Goldreich O (2001) Foundations of cryptography. Cambridge University Press

  9. Wong D, Liu Z (2013) Secure multiple file sharing in cloud computing systems. Technical Report, City University of Hong kong

  10. Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy ’07, Washington

  11. Fiat A Batch RSA. In: Proc. of CRYPTO ’89

  12. Blaze M, Bleumer G, Strauss M (1998) Divertible protocols and atomic proxy cryptography. In: Proc. of EUROCRYPT ’98, Espoo

  13. Boldyreva A, Goyal V, Kumar V (2008) Identity-based encryption with efficient revocation. In: Proc. of CCS ’08, Alexandria

  14. Boneh D, Franklin M (2001) Identity-based encryption from the weil pairing. In: Proc. of CRYPTO ’01, Santa Barbara

  15. Zhou J, Cao Z, Dong X, Lin X, Vasilakos A.V (2013) Securing m-healthcare social networks: challenges, countermeasures and future directions. IEEE Wirel Commun 10(4):12–21

    Article  Google Scholar 

  16. Canetti R, Hohenberger S (2007) Chosen-ciphertext secure proxy re-encryption. In: Proc. of CCS ’07, New York

  17. Zhou J, Lin X, Dong X, Cao Z (2015) PSMPA: patient self-controllable and multi-level privacy-preserving cooperative authentication in distributed m-healthcare cloud computing system. IEEE Trans Parallel Distrib Syst 26(6):1693–1703

    Article  Google Scholar 

  18. Cheung L, Newport C (2007) Provably secure ciphertext policy ABE. In: Proc. of CCS ’07, New York

  19. Yu S, Wang C, Ren K, Lou W Attribute-based data sharing with attribute revocation. In: Proc. of ASIACCS ’10

  20. di Vimercati SDC, Foresti S, Jajodia S, Paraboschi S, Samarati P (2007) Over-encryption: management of access control evolution on outsourced data. In: Proc. of VLDB ’07, Vienna

  21. Zhou J, Cao Z, Dong X, Xiong N, Vasilakos AV (2015) 4S: a secure and privacy-preserving key management scheme for cloud-assisted wireless body area network in m-healthcare social networks. Inf Sci 314:255–276

    Article  Google Scholar 

  22. Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based encryption for fine-grained access control of encrypted data. In: Proc. of CCS ’06, Alexandria

  23. Kallahalla M, Riedel E, Swaminathan R, Wang Q, Fu K (2003) Plutus: scalable secure file sharing on untrusted storage. In: Proc. of FAST ’03, Berkeley

  24. Liang X, Cao Z, Lin H, Shao J (2009) Attribute-based procy re-encryption with delegating capabilities. In: Proc. of ASIACCS ’09, Sydney

  25. Sahai A, Waters B (2005) Fuzzy identity-based encryption. In: Proc. of EUROCRYPT ’05, Aarhus

  26. Pirretti M, Traynor P, McDaniel P, Waters B (2006) Secure attribute-based systems. In: Proc. of CCS ’06, New York

  27. Ateniese G, Fu K, Green M, Hohenberger S (2006) Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans Inf Syst Secur 9(1):1–30

    Article  MATH  Google Scholar 

  28. Bethencourt J, sahai A, Waters B (2007) Ciphertext-policy attribute-based encryption. In: IEEE symposium on security and privacy, pp 321–334

  29. Green M, Ateniese G (2007) Identity-based proxy re-encryption. In: ACNS, pp 288–306

  30. Libert B, Vergnaud D Unidirectional chosen-ciphertext secure proxy re-encryption. In: Proc. of PKC ’08

  31. Ostrovsky R, Sahai A, Waters B Attribute-based encryption with non-monotonic access structures. In: ACM CCS ’07

  32. Zhou J, Cao Z, Dong X, Lin X (2015) TR-MABE: white-box traceable and revocable multi-authority attribute-based encryption and its applications to multi-level privacy-preserving e-healthcare cloud computing systems. IEEE INFOCOM

  33. Yu S, Wang C, Ren K, Lou W (2010) Achieving secure, scalable, and fine-grained data access control in cloud computing. IEEE INFOCOM

  34. Lewko A, Okamoto T, Sahai A, Takashima K, Waters B (2010) Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Proc. of EUROCRYPT

  35. Lynn B PBC Library, http://crypto.stanford.edu/pbc/

  36. Multiprecision integer and rational arithmetic c/c++ library, http://www.shamus.ie/

  37. Bellare M, Rogaway P Random oracles are practical: a paradigm for designing efficient protocols. In: Proc. of CCS ’93

  38. Desmedt Y, Gennaro R, Kurosawa K, Shoup V (2010) A new and improved paradigm for hybrid encryption secure against chosen-ciphertext attack. J Cryptogr 23(1):91–120

    Article  MathSciNet  MATH  Google Scholar 

  39. Shacham H, Boneh D (2001) Improving SSL handshake performance via batching, RSA 2001, Lecture Notes in Computer Science (LNCS), vol 2020, pp 28–43

  40. Cao Z (2012) New directions of modern cryptography. CRC Press Inc, pp 1–400. ISBN: 146650138

  41. Boneh D, Gentry C, Waters B (2005) Collusion resistant broadcast encryption with short ciphertexts and private keys, CRYPTO 2005, Lecture Notes in Computer Science (LNCS), vol 3621, pp 258–275

  42. Lubicz D, Sirvent T (2008) Attribute-based broadcast encryption scheme made efficient, AFRICACRYPT 2008, Lecture Notes in Computer Science (LNCS), vol 5023, pp 325– 342

  43. Dong M, Kimata T, Sugiura K, Zettsu K (2014) Quality-of-experience (QoE) in emerging mobile social networks. IEICE Trans 97-D(10):2606–2612

    Google Scholar 

  44. Ota K, Dong M, Cheng Z, Li J, Wang X, Shen X (2012) ORACLE: mobility control in wireless sensor and actor networks. Comput Commun 35(9):1029–1037

    Article  Google Scholar 

  45. Dong M, Ota K, Yang LT, Chang S, Zhu H, Zhou Z (2014) Mobile agent-based energy-aware and user-centric data collection in wireless sensor networks. Comput Netw 74:58– 70

    Article  Google Scholar 

  46. Dong M, Ota K, Li H, Du S, Zhu H, Guo S (2014) RENDEZVOUS: towards fast event detecting in wireless sensor and actor networks. Computing 96(10):995–1010

    Article  Google Scholar 

  47. Li H, Lin X, Yang H, Liang X, Lu R, Shen X (2014) EPPDR: an efficient privacy-preserving demand response scheme with adaptive key evolution in smart grid. IEEE Trans Parallel Distrib Syst 25(8):2053–2064

    Article  Google Scholar 

  48. Zhou J, Cao Z, Dong X, Lin X (2015) Security and privacy in cloud-assisted wireless wearable communications: challenges, solutions and future directions. IEEE Wirel Commun 22(2):136–144

    Article  Google Scholar 

  49. Zhou J, Dong X, Cao Z, Vasilakos AV (2015) Secure and privacy preserving protocol for cloud-based vehicular DTNs. IEEE Trans Inf Forensics Secur 10(6):1299–1314

    Article  Google Scholar 

  50. Li H, Lu R, Zhou L, Yang B, Shen X (2014) An efficient merkle tree based authentication scheme for smart grid. IEEE Syst J 8(2):655–663

    Article  Google Scholar 

  51. Li H, Dai Y, Tian L, Yang H (2009) Identity-based authentication for cloud computing, Lecture Notes of Computer Science (LNCS), vol 5931, pp 157–166

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant 61411146001, 61371083, 61373154 and U1509219.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhou or Zhenfu Cao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Cao, Z. & Dong, X. Secure and efficient fine-grained multiple file sharing in cloud-assisted crowd sensing networks. Peer-to-Peer Netw. Appl. 9, 774–794 (2016). https://doi.org/10.1007/s12083-016-0449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-016-0449-0

Keywords

Navigation