Skip to main content
Log in

A robust power control scheme for femtocell networks with probability constraint of channel gains

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

In this paper, a robust power control algorithm is proposed in two-tier femtocell network system in order to address the uncertain channel gains of the interference links. In the algorithm, an outage probability is used to guarantee the communication qualities of users. As the deterministic form of the outage probability constraint is not convex of power, a novel and simple method is utilized to solve the power allocation problem. The allocation solution can be determined based on the average channel gains which are engaged with a dynamic factor with average signal-to-interference-plus-noise ratio. In the scheme, a dynamic power adjustment algorithm is developed. The algorithm attempts to guarantee the outage probability requirement of the macrocell user, and to achieve the optimal power allocation of femtocell users. Apart from the appropriate resource for the network, an admission control algorithm is adopted to remove the femtocell user whose communication quality can not be ensured. Numerical results demonstrate the effectiveness of the robust power control algorithm and also explain the admission control algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu Z, Hao L, Xia Y, et al. (2015) Price bargaining based on the Stackelberg game in two-tier orthogonal frequency division multiple access femtocell networks. IET Commun 9(1):133–145

    Article  Google Scholar 

  2. Treeumnuk D, Popescu D (2014) Enhanced spectrum utilisation in dynamic cognitive radios with adaptive sensing. IET Signal Proc 8(4):339–346

    Article  Google Scholar 

  3. Zheng K, Wang Y, Lin C, et al. (2011) Graph-based interference coordination scheme in orthogonal frequency-division multiplexing access femtocell networks. IET Commun 5(17):2533– 2541

    Article  MathSciNet  Google Scholar 

  4. Duan L, Huang J, Shou B (2013) Economics of femtocell service provision. IEEE Trans Mob Comput 12(11):2261– 2273

    Article  Google Scholar 

  5. Calin D, Claussen H, Uzunaliglu H (2010) On femto deployment architectures and macrocell offloading benefits in joint macro-femto deployments. IEEE Commun Mag 48(1):26–32

    Article  Google Scholar 

  6. He S, Chen J, Li X, et al. (2014) Mobility and intruder prior information improving the barrier coverage of sparse sensor networks. IEEE Trans Mob Comput 13(6):1268–1282

    Article  Google Scholar 

  7. Chandhar P, Das S (2014) Area spectral efficiency of co-channel deployed OFDMA femtocell networks. IEEE Trans Wirel Commun 13(7):3524–3528

    Article  Google Scholar 

  8. Guan X, Han Q, Ma K, et al. (2013) Robust uplink power control for co-channel two-tier femtocell networks. AEU Int J Electron Commun 67(6):504–512

    Article  Google Scholar 

  9. Duy N, Long L, Hossain E, et al. (2012) Distributed interference management in two-tier CDMA femtocell networks. IEEE Trans Wirel Commun 11(3):979–989

    Article  Google Scholar 

  10. He S, Shin D, Zhang J et al (2015) Full-view area coverage in camera sensor networks: dimension reduction and near-optimal solutions. IEEE Trans Veh Technol. doi:10.1109/TVT.2015.2498281

  11. Chandrasekhar V, Andrews J, Gatherer A (2008) Femtocell networks: a survey. IEEE Commun Mag 46(9):59–67

    Article  Google Scholar 

  12. He S, Chen J, Yau K et al (2010) Energy-efficient capture of stochastic events under periodic network coverage and coordinated sleep. IEEE Trans Parallel Distrib Syst 23(6):1090–1102

  13. Han Q, Bo Y, Wang X, et al. (2014) Hierarchical-game-based uplink power control in femtocell networks. IEEE Trans Veh Technol 63(6):2819–2835

    Article  Google Scholar 

  14. Wang H, Ding Z (2015) Power control and resource allocation for outage balancing in femtocell networks. IEEE Trans Wirel Commun 14(4):2043–2057

    Article  Google Scholar 

  15. Wang H, Ding Z (2014) Macrocell-queue-stabilization based power control of femtocell networks. IEEE Trans Wirel Commun 13(9):5233–5236

    Google Scholar 

  16. Kim M, Hui J, Tobagi F (2010) Cross-tier interference mitigation for two-tier OFDMA femtocell networks with limited macrocell information. In: Proceeding of the international conference on global telecommunications conference, Miami, pp 1–5

  17. Zappone A, Chong Z, Jorswieck E, et al. (2013) Energy-aware competitive power control in relay-assisted interference wireless networks. IEEE Trans Wirel Commun 12(4):1860–1871

    Article  Google Scholar 

  18. Sengupta S, Chatterjee M, Kwiat A (2010) A game theoretic framework for power control in wireless sensor networks. IEEE Trans Comput 59(2):231–242

    Article  MathSciNet  MATH  Google Scholar 

  19. Hyungsik J, Zhang R (2014) Throughput maximization in wireless powered communication networks. IEEE Trans Wirel Commun 13(1):418–428

    Article  Google Scholar 

  20. Jindal N, Weber S, Andrews J (2008) Fractional power control for decentralized wireless networks. IEEE Trans Wirel Commun 7(12):5482–5492

    Article  Google Scholar 

  21. Youngmin J, Quek T, Hyundong S (2011) Beamforming optimization for multiuser two-tier networks. Commun Netw 13(4):327–338

    Article  Google Scholar 

  22. Liu Z, Wang J, Xia Y, et al. (2013) Robust optimisation of power control for femtocell networks. IET Signal Proc 7(5):360– 367

    Article  MathSciNet  Google Scholar 

  23. Dong K, Long L, Hossain E (2008) Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Trans Wirel Commun 7(12):5517–5527

    Article  Google Scholar 

  24. Yates R (1995) A framework for uplink power control in cellular radio systems. IEEE J Sel Areas Commun 13(7):1341– 1347

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported in part by the National Science Foundation of China (Project numbers 61473247, 61573301, 61573303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Liu.

Appendices

Appendix

The detailed proofs of the proposition in Section 3 are given as follows

Appendix A

Proof

First introduces the Cauchy-Schwarz inequality

$$\begin{array}{@{}rcl@{}} |\langle X,Y \rangle|^{2}\leq\langle X,X\rangle\cdot\langle Y,Y \rangle \end{array} $$
(29)

we can elaborate the follow

$$\begin{array}{@{}rcl@{}} &&(X_{1}Y_{1}\,+\,X_{2}Y_{2}\,+\,\cdots\,+\,X_{N}Y_{N})\!\leq\!|X_{1}Y_{1}\,+\,X_{2}Y_{2}\,+\,\cdots\,+\,X_{N}Y_{N}| \\ &&\leq\left[\left( {X_{1}^{2}}+{X_{2}^{2}}+\cdots+{X_{N}^{2}}\right)\times\left( {Y_{1}^{2}}+{Y_{2}^{2}}+\cdots+{Y_{N}^{2}}\right)\right]^{1/2}\\ &&\leq \sqrt{\sum\limits_{i=1}^{N}{X_{i}^{2}}}\cdot\sum\limits_{i=1}^{N}|Y_{i}| \end{array} $$

then we can obtain

$$\begin{array}{@{}rcl@{}} &&\sum\limits_{j=0,j\neq i}^{N}p_{j}g_{i,j}=\sum\limits_{j=0,j\neq i}^{N}G_{i,j}\overline{g}_{i,j}p_{j}\\ &&\leq \sqrt{\sum\limits_{j=0,j\neq i}^{N}{p_{j}^{2}}\overline{g}_{i,j}^{2}}\cdot\sum\limits_{j=0,j\neq i}^{N}|G_{i,j}| \end{array} $$
(30)

formulation (11) can be rewritten as follows

$$\begin{array}{@{}rcl@{}} &&Pr\!\left[\sum\limits_{j=0,j\neq i}^{N}|G_{i,j}|\!\leq\!\frac{1}{\sqrt{{{\sum}_{j=0,j\neq i}^{N}{p_{j}^{2}}\overline{g}_{i,j}^{2}}}} \!\left( \frac{p_{i} g_{i,i}}{\widehat{\gamma}_{i}}\,-\,\sigma^{2}\right)\right]\\ &&\geq1-\varepsilon_{1} \end{array} $$
(31)

When G i, j is assumed to be an exponential distribution with unit mean, we can obtain

$$\begin{array}{@{}rcl@{}} f_{G_{i,j}}(x)=\left\{ \begin{array}{ll} e^{-x}& x>0\\ 0 & \textit{else} \end{array} \right. \end{array} $$
(32)

We assume that Y = |x| = |G i, j |. Based on Eq. 32, the distribution function of Y can be elaborated as

$$\begin{array}{@{}rcl@{}} F_{Y}(y)&=&P\{Y\leq y\}=P\{|x|\leq y\}\\ &=&{\int}_{-y}^{0}f_{G_{i,j}}(x)dx+{{\int}_{0}^{y}}f_{G_{i,j}}(x)dx\\ &=&{{\int}_{0}^{y}}e^{-x}dx=1-e^{-y} \end{array} $$
(33)

The probability density function of Y is \(f_{Y}(y)=F_{Y}^{\prime }(y)\), hence,

$$\begin{array}{@{}rcl@{}} f_{|G_{i,j}|}(|x|)=\left\{ \begin{array}{ll} e^{-|x|}& |x|>0\\ 0 & \textit{else} \end{array} \right. \end{array} $$
(34)

Based on Eq. 34, we are aware that |G i, j | is also an exponential distribution with parameter 1. Next, we introduce the Gamma (Γ) distribution. If X conforms a gamma distribution with the parameters α and β (i.e. X ∼ Γ(α, β)), the probability density function of X can be formulated as :

$$\begin{array}{@{}rcl@{}} f_{X}(x)=\left\{ \begin{array}{ll} \frac {\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}& x>0\\ 0 & \text{else} \end{array} \right. \end{array} $$
(35)

Assume that X and Y are independent to each other (i.e. X ∼ Γ(α 1, β), Y ∼ Γ(α 2, β) and Z = X + Y), the probability density function of Z can be formulated as,

$$\begin{array}{@{}rcl@{}} f_{Z}(z)={\int}_{-\infty}^{+\infty}f_{X}(x)f_{Y}(z-x)dx \end{array} $$
(36)

If and only if x > 0 and zx > 0, the integrand is not zero. If z ≤ 0,f Z (z) = 0. If z > 0, f Z (z) is given as:

$$\begin{array}{@{}rcl@{}} f_{Z}(z)&=&{{\int}_{0}^{z}}\frac{\beta^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}){\Gamma}(\alpha_{2})}x^{\alpha_{1}-1} (z-x)^{\alpha_{2}-1}e^{-\beta x-\beta(z-x)}dx \\ &=&\frac{\beta^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}){\Gamma}(\alpha_{2})}e^{-\beta x}{{\int}_{0}^{z}} x^{\alpha_{1}-1}(z-x)^{\alpha_{2}-1}dx \\ &\overset{x=zt}{=}&\frac{\beta^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}){\Gamma}(\alpha_{2})}e^{-\beta z}z^{\alpha_{1}+\alpha_{2}-1}{{\int}_{0}^{1}}t^{\alpha_{1}-1}(1-t)^{\alpha_{2}-1}dt\\ &=&\frac {\beta^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}){\Gamma}(\alpha_{2})}e^{-\beta z}z^{\alpha_{1}+\alpha_{2}-1}\beta(\alpha_{1},\alpha_{2}) \end{array} $$
(37)

the β(α 1, α 2) is the function of β. Based on Appendix C, the relationship between Γ function and β function can be formulated as

$$\begin{array}{@{}rcl@{}} \frac{\beta(\alpha_{1},\alpha_{2})}{\Gamma(\alpha_{1}){\Gamma}(\alpha_{2})}=\frac{1}{\Gamma(\alpha_{1}+ \alpha_{2})} \end{array} $$
(38)

Hence,

$$\begin{array}{@{}rcl@{}} f_{Z}(z)=\left\{ \begin{array}{ll} \frac {\beta^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}+\alpha_{2})}z^{\alpha_{1}+\alpha_{2}-1}e^{-\beta z}& z>0\\ 0 & \text{else} \end{array} \right. \end{array} $$
(39)

and Z ∼ Γ(α 1 + α 2, β). If X, Y and Z are independent to each other, X ∼ Γ(α 1, β), Y ∼ Γ(α 2, β), Z ∼ Γ(α 3, β) and U = X + Y + Z. Based on the same token, we can obtain U ∼ Γ(α 1 + α 2 + α 3, β). This conclusion can elaborate to multiple independent Γ distribution. If X i ∼ Γ(α i , β), then

$$\begin{array}{@{}rcl@{}} X_{1}+X_{2}+\cdots+X_{n}\sim{\Gamma}(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n},\beta) \end{array} $$
(40)

From the formulation (34), we know that |G i, j |∼Γ(1,1). Based on Eq. 40, we can be obtained,

$$\begin{array}{@{}rcl@{}} \sum\nolimits_{j=0,j\neq i}^{N}|G_{i,j}|&\sim&{\Gamma}(|G_{i,0}|+|G_{i,1}|+|G_{i,2}|\\ &&+\cdots+|G_{i,i-1}|+0+|G_{i,i+1}|\\ &&+ \cdots+|G_{i,N}|,1)\\ &\sim&{\Gamma}(N,1) \end{array} $$
(41)

Hence, the probability density function of \({\sum }_{j=0,j\neq i}^{N}|G_{i,j}|\) can be elaborated as

$$\begin{array}{@{}rcl@{}} f\left( \sum\nolimits_{j=0,j\neq i}^{N}|G_{i,j}|\right)&=&\frac {1}{\Gamma(N)}\left( \sum\nolimits_{j=0,j\neq i}^{N}|G_{i,j}|\right)^{N-1}\\ &&e^{-{\sum}_{j=0,j\neq i}^{N}|G_{i,j}|} {}\\ \end{array} $$
(42)

Based on Eqs. 31 and 42, the value of \(\mathcal {P}_{f_{i}}\) can be expressed as

$$\begin{array}{@{}rcl@{}} &&\mathcal{P}_{f_{i}}=\frac {1}{\Gamma(N)}{\int}_{0}^{\frac{1}{\sqrt{{{\sum}_{j=0,j\neq i}^{N}{p_{j}^{2}}\overline{g}_{i,j}^{2}}}}\left( \frac{p_{i}g_{i,i}}{\widehat{\gamma}_{i}}-\sigma^{2}\right)}\\ &&\left( \!\sum\nolimits_{j=0,j\neq i}^{N}|G_{i,j}| \right)^{N-1} \!e^{-\left( {\sum}_{j=0,j\neq i}^{N}|G_{i,j}|\right)}d\! \left( \sum\nolimits_{j=0,j\neq i}^{N}\!|G_{i,j}|\right) {}\\ \end{array} $$
(43)

Based on the properties of the gamma function, Γ(N) = (N−1)!, the value of \(\mathcal {P}_{f_{i}}\) can be obtained as follows

$$\begin{array}{@{}rcl@{}} \mathcal{P}_{f_{i}}&=&\frac {1}{\Gamma(N)}{\int}_{0}^{A_{i}}t^{N-1}e^{-t}dt \\ &=&\frac{1}{(N-1)!}\left[-(e^{-t}t^{N-1})\mid_{0}^{A_{i}}-{\int}_{0}^{A_{i}}e^{-t}(N-1)t^{N-2}dt\right]\\ &=&1-{\frac{e^{-{A_{i}}}}{(N-1)!}}\sum\nolimits_{k=0}^{N-1}\frac{(N-1)!}{(N-1-k)!}{A_{i}}^{N-1-k} \end{array} $$
(44)

where \(A_{i}=\frac {1}{\sqrt {{{\sum }_{j=0,j\neq i}^{N}{p_{j}^{2}}\overline {g}_{i,j}^{2}}}}\left (\frac {p_{i}g_{i, i}}{\widehat {\gamma }_{i}}-\sigma ^{2}\right )\) and \(t={\sum }_{j=0,j\neq i}^{N}|G_{i,j}|\). The value of \(\mathcal {P}_{f_{i}}\) is obtained. □

Appendix B

Proof

Based on the Cauchy-Schwarz inequality, we can obtain:

$$\begin{array}{@{}rcl@{}} \sum\limits_{i=1}^{N}p_{i}g_{i}=\sum\limits_{i=1}^{N}G_{i}\overline{g}_{i}p_{i}\leq \sqrt{\sum\limits_{i=1}^{N}{p_{i}^{2}}\overline{g}_{i}^{2}}\cdot\sum\limits_{i=1}^{N}|G_{i}| \end{array} $$
(45)

and (17) can be rewritten

$$\begin{array}{@{}rcl@{}} Pr\left[\sum\limits_{i=1}^{N}|G_{i}|\leq\frac{1}{\sqrt{{{\sum}_{i=1}^{N}{p_{i}^{2}}\overline{g}_{i}^{2}}}} \left( \frac{p_{0}g_{m}}{\widehat{\gamma}_{m}}-\sigma^{2}\right)\right]\geq1-\varepsilon_{2}{}\\ \end{array} $$
(46)

where \(g_{i}=G_{i}{\bar {g_{i}}}\) and G i is the exponential distribution with the parameter of 1. Similarly, we can obtain

$$\begin{array}{@{}rcl@{}} {\sum}_{i=1}^{N}|G_{i}|&\sim&{\Gamma}(|G_{1}|+|G_{2}|+\cdots+|G_{N}|,1)\\ &\sim&{\Gamma}(N,1) \end{array} $$
(47)

The probability density function of \({\sum }_{i=1}^{N}|G_{i}|\) is

$$\begin{array}{@{}rcl@{}} f\left( \sum\limits_{i=1}^{N}|G_{i}|\right)=\frac{1}{\Gamma(N)}\left( \sum\limits_{i=1}^{N}|G_{i}|\right)^{N-1}e^{-{\sum}_{i=1}^{N}| G_{i}|} \end{array} $$
(48)

By elaborating (46) and (48), the probability of \(\mathcal {P}_{m}\) can be obtained as

$$\begin{array}{@{}rcl@{}} \mathcal{P}_{m}&=&\frac {1}{(N-1)!}{{\int}_{0}^{B}}t^{N-1}e^{-u}du \\ &=&\frac{1}{(N-1)!}\left[-(e^{-u}u^{N-1}){\mid_{0}^{B}}-{{\int}_{0}^{B}}e^{-u}(N-1)u^{N-2}du\right]\\ &=&1-\frac{e^{-B}}{(N-1)!}\sum\nolimits_{l=0}^{N-1}\frac{(N-1)!}{(N-1-l)!}B^{N-1-l} \end{array} $$
(49)

where we define \(B=\frac {1}{\sqrt {{{\sum }_{i=1}^{N}{p_{i}^{2}}\overline {g}_{i}^{2}}}}\left (\frac {p_{0} g_{m}}{\widehat {\gamma }_{m}}-\sigma ^{2}\right )\), \(u={\sum }_{i=1}^{N}|G_{i}|\). The value of \(\mathcal {P}_{m}\) is obtained. □

Appendix C

Proof

First, the gamma function is defined, \({\Gamma }(\alpha )={\int }_{0}^{+\infty }x^{\alpha -1}e^{-x}dx\). Then, the beta function is defined as \(\beta (p,q)={{\int }_{0}^{1}}x^{p-1}(1-x)^{q-1}dx\). Then we prove the relationship between gamma function and beta function. Given that

$$\begin{array}{@{}rcl@{}} \beta(p,q)&=&{{\int}_{0}^{1}}x^{p-1}(1-x)^{q-1}dx \\ &\overset{x={1-y}}{=}&{{\int}_{1}^{0}}(1-y)^{p-1}y^{q-1}d(1-y)\\ &=&{{\int}_{0}^{1}}y^{q-1}(1-y)^{p-1}dy=\beta(q,p) \end{array} $$
(50)

Hence, we can obtain

$$\begin{array}{@{}rcl@{}} \beta(p+1,q+1)&=&{{\int}_{0}^{1}}x^{p}(1-x)^{q}dx\\ &=&\frac{q}{p+1}{{\int}_{0}^{1}}x^{p+1}(1-x)^{q-1}dx\\ &=&\frac{q}{p+1}\{ {{\int}_{0}^{1}}[x^{p}\!-x^{p}(1\,-\,x)](1-x)^{q-1}dx\}\\ &=&\frac{q}{p+1}[\beta(p+1,q)-\beta(p+1,q+1)] \\ \end{array} $$
(51)

and

$$\begin{array}{@{}rcl@{}} \beta(p+1,q+1)=\frac{q}{p+q+1}\beta(p+1,q) \end{array} $$
(52)

Based on Eq. 52, we can obtain the following

$$\begin{array}{@{}rcl@{}} \beta(m+1,n+1)&=&\frac{n}{m+n+1}\beta(m+1,n)\\ &=&\frac{n}{m+n+1}\cdot\frac{n-1}{m+n}\beta({m+1,n-1})\\ &=&\frac{n}{m+n+1}\cdot\frac{n-1}{m+n}\cdots\frac{1}{m+2}\beta({m+1,1}) \\ \end{array} $$
(53)

As β(p, q) = β(q, p), we can elaborate the following

$$\begin{array}{@{}rcl@{}} \beta({m+1,1})=\beta(1,m+1) \end{array} $$
(54)

Hence,

$$\begin{array}{@{}rcl@{}} \beta(1,m+1)&=&\frac{m}{m+1}\beta(1,m)=\frac{m}{m+1}\cdot\frac{m-1}{m}\beta(1,m-1)\\ &=&\frac{m}{m+1}\cdot\frac{m-1}{m}\cdots\frac{1}{2}\beta(1,1) \end{array} $$
(55)

Since β(1, 1) = 1, we can obtain

$$\begin{array}{@{}rcl@{}} \beta(m+1,n+1)&=&\frac{n}{m+n+1}\cdot\frac{n-1}{m+n}\cdots\frac{1}{m+2}\\ &&\cdot\frac{m}{m+1}\cdot\frac{m-1}{m}{\cdots} \frac{1}{2}\cdot1\\ &=&\frac{\Gamma(m+1){\Gamma}({n+1})}{\Gamma(m+n+2)} \end{array} $$
(56)

So we obtain

$$\begin{array}{@{}rcl@{}} \frac{\beta(\alpha_{1},\alpha_{2})}{\Gamma(\alpha_{1}){\Gamma}(\alpha_{2})}=\frac{1}{\Gamma(\alpha_{1}+ \alpha_{2})} \end{array} $$
(57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, S., Guan, X. et al. A robust power control scheme for femtocell networks with probability constraint of channel gains. Peer-to-Peer Netw. Appl. 11, 21–33 (2018). https://doi.org/10.1007/s12083-016-0486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-016-0486-8

Keywords

Navigation