Skip to main content
Log in

A multi-dimensional routing based approach for efficient communication inside partitioned social networks

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Social Networks (SNs) connect nodes from different geographical areas, keeping users updated about current affairs through message sharing. Natural calamities or deliberately imposed actions can cause Internet disconnections between geographical areas. This results in a SN partition which leads to communication loss between nodes inside the partitioned area. In this paper, we propose an extended Multi-Dimensional Routing (eMDR) algorithm using Greedy routing, which considers multiple attributes for routing. It improves the communication efficiency inside partitioned SNs. The performance of the proposed algorithm is validated by considering three dimensions/attributes, viz., social interest, geographical location and time-zones of social nodes on both real and synthetic SN datasets. The results of topological and routing probabilities for Chord and novel Social Interest Overlay networks, show considerable improvement in communication inside partitioned SNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Travers J, Milgram S (1969) An experimental study of the small world problem. Sociometry 32:425–443

    Article  Google Scholar 

  2. Mei Li, Wang-Chien Lee, and Anand Sivasubramaniam. Semantic small world (2004) An overlay network for peer-to-peer search. In: Proceedings of the 12 th IEEE International Conference on Network Protocols, ICNP, pages 228–238. IEEE

    Google Scholar 

  3. Ding D, Conti M, Figueiredo R (2015) Impact of country-scale internet disconnection on structured and social p2p overlays. In: Proceedings of the 16 th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pages 1–9. IEEE

    Google Scholar 

  4. Gao L, Li M, Bonti A, Zhou W, Yu S (2013) Multi-dimensional routing protocol in human-associated delay-tolerant networks. IEEE Trans Mob Comput 12(11):2132–2144

    Article  Google Scholar 

  5. Saberi S, Trunfio P, Talia D, Fesharaki MN, Badie K (2010) Using social network and semantic overlay network approaches to share knowledge in distributed data mining scenarios. In: Proceedings of the International Conference on High Performance Computing and Simulation (HPCS), pages 536–544. IEEE

    Google Scholar 

  6. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424(4):175–308

    Article  MathSciNet  MATH  Google Scholar 

  7. Crespo A, Garcia-Molina H (2004) Semantic overlay networks for p2p systems. In: AP2PC, volume 3601, pages 1–13. Springer

    Google Scholar 

  8. Sun W-j, Qiu H-m (2008) A social network analysis on blogospheres. In: Proceedings of the 15 th Annual International Conference on Management Science and Engineering, ICMSE, pages 1769–1773. IEEE

    Google Scholar 

  9. Mingxin Zhang. Social network analysis (2010) History, concepts, and research. In: Handbook of social network technologies and applications, pages 3–21. Springer

    Google Scholar 

  10. Babu KS, Jena SK, Hota J, networks BMA s (2013) A generalization approach. Computers & Electrical Engineering 39(7):1947–1961

    Article  Google Scholar 

  11. Tsikerdekis M, Zeadally S (2014) Multiple account identity deception detection in social media using nonverbal behavior. IEEE Transactions on Information Forensics and Security 9(8):1311–1321

  12. Wang S, Lin H, Hsu C-H, Yang F (2016) Collaboration reputation for trustworthy web service selection in social networks. J Comput Syst Sci 82(1):130–143

    Article  MathSciNet  Google Scholar 

  13. Open/R. Facebook routing platform, https://code.facebook.com/posts/1142111519143652/introducing-open-r-a-new-modular-routing-platform/ , 2016

  14. Wang Y, Yun X, Li Y (2007) Analyzing the characteristics of gnutella overlays. In: Proceedings of the 4 th International Conference on Information Technology, ITNG'07, pages 1095–1100. IEEE

    Google Scholar 

  15. Rowstron A, Pastry PD (2001) Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Systems Platforms and Open Distributed Processing, pages 329–350. Springer

    Google Scholar 

  16. Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD, Tapestry JDK (2004) A resilient global-scale overlay for service deployment. IEEE Journal on selected areas in communications 22(1):41–53

    Article  Google Scholar 

  17. Kutzner K, Fuhrmann T (2005) Measuring large overlay networks: the overnet example. In: Kommunikation in Verteilten Systemen (KiVS), pages 193–204. Springer

    Google Scholar 

  18. Marti S, Ganesan P, Sprout HG-M (2004) P2p routing with social networks. In: EDBT Workshops, volume 3268, pages 425–435. Springer

    Google Scholar 

  19. Stoica I, Morris R, Liben-Nowell D, Karger DR, Frans Kaashoek M, Dabek F, Balakrishnan H (2003) Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Transactions on Networking (TON) 11(1):17–32

    Article  Google Scholar 

  20. Li M, Lee W-C, Sivasubramaniam A, Lee DL (2004) A small world overlay network for semantic based search in p2p systems. In: Proceedings of the 2 nd Workshop on Semantics in Peer-to-Peer and Grid Computing, New York, USA, pages 71–90

    Google Scholar 

  21. Lua EK, Crowcroft J, Pias M, Sharma R, Lim S (2005) A survey and comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys & Tutorials 7(2):72–93

    Article  Google Scholar 

  22. Xie J, Li Z, Chen G (2007) A semantic overlay network for unstructured peer-to-peer protocols. In: Proceedings of the International Conference on Parallel and Distributed Systems, volume 2, pages 1–8. IEEE

    Google Scholar 

  23. Zhang W, Zheng Q, Li H, Tian F (2012) An overlay multicast protocol for live streaming and delay-guaranteed interactive media. J Netw Comput Appl 35(1):20–28

    Article  Google Scholar 

  24. Lee C, Choi J, Kim E (2014) A popularity-aware semantic overlay for efficient peer-to-peer search. Advances in Electrical and Computer Engineering 14(4):105–108

    Article  Google Scholar 

  25. Pogkas I, Kriakov V, Chen Z, Delis A (2009) Adaptive neighborhood selection in peer-to-peer networks based on content similarity and reputation. Peer-to-peer networking and applications 2(1):37–59

    Article  Google Scholar 

  26. Korzun D, Gurtov A (2014) Hierarchical architectures in structured peer-to-peer overlay networks. Peer-to-Peer Networking and Applications 7(4):359–395

    Article  Google Scholar 

  27. Duan Z, Tian C, Zhou M, Wang X, Zhang N, Hongwei D, Wang L (2016) Two-layer hybrid peer-to-peer networks. Peer-to-Peer Networking and Applications:1–19

  28. Liben-Nowell D, Novak J, Kumar R, Raghavan P, Tomkins A (2005) Geographic routing in social networks. Proc Natl Acad Sci U S A 102(33):11623–11628

    Article  Google Scholar 

  29. Leskovec J, Horvitz E (2014) Geospatial structure of a planetary-scale social network. IEEE Transactions on Computational Social Systems 1(3):156–163

    Article  Google Scholar 

  30. Jia S, Juste PS, Figueiredo RJ (2013) A multidimensional heuristic for social routing in peer-to-peer networks. In: Proceedings of the International Conference on Consumer Communications and Networking Conference (CCNC), pages 329–335. IEEE

    Google Scholar 

  31. Pan H, Crowcroft J, Yoneki E (2011) Bubble rap: social-based forwarding in delay-tolerant networks. IEEE Trans Mob Comput 10(11):1576–1589

    Article  Google Scholar 

  32. Xia F, Li L, Jedari B, Pis SKD (2016) A multi-dimensional routing protocol for socially-aware networking. IEEE Trans Mob Comput 15(11):2825–2836

    Article  Google Scholar 

  33. Zhu K, Li W, Xiaoming F (2014) Smart: a social-and mobile-aware routing strategy for disruption-tolerant networks. IEEE Trans Veh Technol 63(7):3423–3434

    Article  Google Scholar 

  34. Li J, Ning Z, Jedari B, Xia F, Lee I, Tolba A (2016) Geo-social distance-based data dissemination for socially aware networking. IEEE Access 4:1444–1453

    Article  Google Scholar 

  35. Dainotti A, Squarcella C, Aben E, Claffy KC, Chiesa M, Russo M, Pescape A (2011) Analysis of country-wide internet outages caused by censorship. In: Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference, pages 1–18. ACM

    Google Scholar 

  36. Peter Mell, Richard Harang, and Assane Gueye. The resilience of the internet to colluding country induced connectivity disruptions. In Proceedings of the Workshop on Security of Emerging Networking Technologies, 2015

    Book  Google Scholar 

  37. Onus M, Richa AW (2011) Minimum maximum-degree publish-subscribe overlay network design. IEEE/ACM Trans Networking 19(5):1331–1343

    Article  Google Scholar 

  38. Gephi tool. The open graph viz platform, https://gephi.org /, 2016

  39. Foursquare dataset. Using location-based services to get customers, https://archive.org/details/201309 foursquare dataset umn/, 2016

  40. Levandoski JJ, Sarwat M, Eldawy A, Lars MFM (2012) A location-aware recommender system. In: Proceedings of the 28th International Conference on Data Engineering (ICDE), pages 450–461. IEEE

    Google Scholar 

  41. Sarwat M, Levandoski JJ, Eldawy A, Lars* MFM (2014) An efficient and scalable location-aware recommender system. IEEE Trans Knowl Data Eng 26(6):1384–1399

    Article  Google Scholar 

  42. Yang D, Zhang D, Chen L, Bingqing Q (2015) Nation telescope: monitoring and visualizing large-scale collective behavior in lbsns. J Netw Comput Appl 55:170–180

    Article  Google Scholar 

  43. Yang D, Zhang D, Bingqing Q (2016) Participatory cultural mapping based on collective behavior data in location-based social networks. ACM Transactions on Intelligent Systems and Technology (TIST) 7(3):30

    Google Scholar 

  44. Networkx. High-productivity software for complex networks, http://networkx.github.io , 2017

  45. Sala A, Cao L, Wilson C, Zablit R, Zheng H, Zhao BY (2010) Measurement-calibrated graph models for social network experiments. In: Proceedings of the 19th international conference on World wide web, pages 861–870. ACM

    Google Scholar 

Download references

Acknowledgements

This research work is funded by SERB, MHRD, under Grant (EEQ/- 2016/000413) for Secure and Efficient Communication Inside Partitioned Social Overlay Networks project, currently going on at National Institute of Technology Goa, Ponda, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahsan Hussain.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Keshavamurthy, B.N. A multi-dimensional routing based approach for efficient communication inside partitioned social networks. Peer-to-Peer Netw. Appl. 12, 830–849 (2019). https://doi.org/10.1007/s12083-018-0683-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-018-0683-8

Keywords

Navigation