Skip to main content

Advertisement

Log in

Resource allocation in two-tier small-cell networks with energy consumption constraints

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Small-cell networks (SCNs) technology is being considered as a promising solution to improve the coverage and capacity for small-cell wireless equipment (SWE). However, the deployment of SCNs is challenging due to wireless channel interference, stochastic tasks arrival, and more prominently, the long-term energy consumption constraint of SWEs. In this paper, we provide a novel distributed dynamic resource management approach for energy-aware applications in two-tier SCNs. The joint admission control (AC) at the transport layer and resource allocation (RA) at the physical layer in SWEs is proposed to solve these challenges. Specifically, the AC and RA problem under two-tier SCNs is formulated as a stochastic optimization model which aims at maximizing the long-term average throughput of SWEs in SCN subject to time-average energy consumption limitation of each SWE and network stability constraint. By adopting Lyapunov optimization theory and Lagrangian dual decomposition technique, we propose a distributed online energy-constraint throughput optimal algorithm (ETOA) to obtain optimal AC and RA decisions. Furthermore, we derive the analytical bounds for the time-average system throughput and the time-average queue backlog achieved by our proposed approach under the constraints of long-term average energy consumption and network stability. The evaluation confirms theoretical analysis on the performance of ETOA and also shows that our approach outperforms other resource allocation methods in satisfying the time-average energy consumption requirement of SWEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Elsaadany M, Ali A, Hamouda W (2017) Cellular LTE-a technologies for the future internet-of-things: physical layer features and challenges. IEEE Commun Surveys Tuts 19(4):2544–2572

    Article  Google Scholar 

  2. Ge X, Yang J, Gharavi H, Sun Y (2017) Energy efficiency challenges of 5 G small cell networks. IEEE Commun Mag 55(5):184–191

    Article  Google Scholar 

  3. Curran M, Rahman MS, Gupta H, Zheng K, Longtin J, Das SR, Mohamed T (2017) Fsonet: a wireless backhaul for multi-gigabit picocells using steerable free space optics. In: Proceedings of the 23rd annual international conference on mobile computing and networking (MobiCom), pp 154–166

  4. Tsiropoulou EE, Vamvakas P, Papavassiliou S (2017) Supermodular game-based distributed joint uplink power and rate allocation in two-tier femtocell networks. IEEE Trans Mobile Comput 16(9):2656–2667

    Article  Google Scholar 

  5. Chandrasekhar V, Andrews JG, Muharemovic T, Shen Z, Gatherer A (2009) Power control in two-tier femtocell networks. IEEE Trans Wireless Com 8(8):4316–4328

    Article  Google Scholar 

  6. Guan P, Wu D, Tian T, Zhou J, Zhang X, Gu L, Kishiyama Y (2017) 5G field trials: OFDM-based waveforms and mixed numerologies. IEEE J Sel Areas Commun 35(6):1234–1243

    Article  Google Scholar 

  7. Chen X, Wu J, Cai Y, Zhang H, Chen T (2015) Energy-efficiency oriented traffic offloading in wireless networks: a brief survey and a learning approach for heterogeneous cellular networks. IEEE J Sel Areas Commun 33(4):627–640

    Article  Google Scholar 

  8. Gursoy M (2007) On the capacity and energy efficiency of the training-base transmissions over fading channels. IEEE Trans Inf Theory 55(10):4543–4567

    Article  Google Scholar 

  9. Adireddy S, Tong L, Viswanathan H (2002) Optimal placement of training for frequency-selective block-fading channels. IEEE Trans Inf Theory 48(8):2338–2353

    Article  MathSciNet  Google Scholar 

  10. Souza A, Amazonas J, Abrao T (2016) Power and subcarrier allocation strategies for energy-efficient uplink OFDMA systems. IEEE J Sel Areas Commun 34(12):3142–3156

    Article  Google Scholar 

  11. Wang F, Chen W, Tang H, Wu Q (2017) Joint optimization of user association, subchannel allocation, and power allocation in multi-cell multi-association OFDMA heterogeneous networks. IEEE Trans Commun 65(6):2672–2684

    Article  Google Scholar 

  12. Zhang H, Jiang C, Beaulieu N, Chu X, Wen X, Tao M (2014) Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Trans Commun 62(7):2366– 2377

    Article  Google Scholar 

  13. Xiang X, Lin C, Chen X, Shen X (2015) Toward optimal admission control and resource allocation for LTE-a femtocell uplink. IEEE Trans Veh Technol 64(7):3247–3261

    Google Scholar 

  14. Guo Y, Yang Q, Liu J, Kwak K (2017) Cross-layer rate control and resource allocation in spectrum-sharing OFDMA small-cell networks with delay constraints. IEEE Trans Veh Technol 66(5):4133–4147

    Google Scholar 

  15. Li Y, Sheng M, Sun Y, Shi Y (2016) Joint optimization of BS operation, user association, subcarrier assignment, and power allocation for energy-efficient HetNets. IEEE J Sel Areas Commun 34(12):3339–3353

    Article  Google Scholar 

  16. Husso M, Hamalainen J, Jantti R, Li J, Mutafungwa E, Wichman R, Zheng Z, Wyglinski A (2010) Interference mitigation by practical transmit beamforming methods in closed femtocells. EURASIP J Wirel Commun Netw 2010(1):186815

    Article  Google Scholar 

  17. Urgaonkar R, Neely MJ (2009) Opportunistic scheduling with reliability guarantees in cognitive radio networks. IEEE Trans Mobile Comput 8(6):766–777

    Article  Google Scholar 

  18. Li Y, Sheng M, Shi Y, Ma X, Jiao W (2014) Energy efficiency and delay tradeoff for time-varying and TP-free wireless networks. IEEE Trans Wireless Commun 13(11):5921–5931

    Article  Google Scholar 

  19. Sheng M, Li Y, Wang X, Li J, Shi Y (2016) Energy efficiency and delay tradeoff in device-to-device communications underlaying cellular networks. IEEE J Sel Areas Commun 34(1):92– 106

    Article  Google Scholar 

  20. Li Y, Sheng M, Yang C, Wang X (2013) Energy efficiency and spectral efficiency tradeoff in TP-limited wireless networks. IEEE Commun Lett 17(10):1924–1927

    Article  Google Scholar 

  21. Li Y, Sheng M, Tan C, Sun Y, Wang X, Shi Y, Li J (2015) Energy-efficient subcarrier assignment and power allocation in OFDMA systems with max-min fairness guarantees. IEEE Trans Commun 63(9):3183–3195

    Article  Google Scholar 

  22. Ng DWK, Lo ES, Schober R (2012) Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Trans Wireless Commun 11(9):3292–3304

    Article  Google Scholar 

  23. Hajisami A, Pompili D (2017) Dynamic joint processing: achieving high spectral efficiency in uplink 5 G cellular networks. Comput Netw 126:44–56

    Article  Google Scholar 

  24. Neely MJ (2006) Energy optimal control for time varying wireless networks. IEEE Trans Inf Theory 52(7):2915–2934

    Article  MathSciNet  Google Scholar 

  25. Georgiadis L, Neely MJ, Tassiulas L (2006) Resource allocation and cross-layer control in wireless networks. Found Trends Netw 1(1):1–144

    Article  Google Scholar 

  26. Neely MJ (2010) Stochastic network optimization with application to communication and queueing systems. Synthesis Lectures on Communication Networks 3(1):1–211

    Article  Google Scholar 

  27. Bertsekas DP (2007) Dynamic programming and optimal control, 3rd ed. Athena Scientific, Belmont

    MATH  Google Scholar 

  28. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Key Research and Development Program under Grant no. 2016YFB 1000102, in part by the National Natural Science Foundation of China under Grant no. 61672318, 61631013, and by the QUALCOMM university-sponsored program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A

Lemma 2

For any nonnegative real numbers x, yandz, there holds [max(xy, 0) + z]2x2 + y2 + z2 + 2x (zy).

Squaring both sides of Eq. 6 and applying Lemma 2 produces

$$\begin{array}{@{}rcl@{}} {Q_{ij}^{2}}{({t + 1})} - {Q_{ij}^{2}}{(t)} &\le& {R_{ij}^{2}}{(t)} + {D_{ij}^{2}}{(t)}\\ &&+ 2{Q_{ij}}(t)\left( {{D_{ij}}(t) - {R_{ij}}(t)}\right) \end{array} $$
(38)

Summing over all queue backlog of SWEs at both sides of Eq. 38 and rearranging terms yield

$$\begin{array}{@{}rcl@{}} \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} \frac{{Q_{ij}^{2}}(t + 1)+{Q_{ij}^{2}}(t)}{2} &\le&\ \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} \frac{{R_{ij}^{2}}{(t)} + {D_{ij}^{2}}{(t)}}{2}\\ &&+\sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J}{Q_{ij}}(t)\\ &&\times\left( {{D_{ij}}(t) - {R_{ij}}(t)}\right) \end{array} $$
(39)

For the update equation of Eij(t), i.e., (9), we similarly have

$$\begin{array}{@{}rcl@{}} \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J}\frac{{E_{ij}^{2}}{({t + 1})} - {E_{ij}^{2}}{(t)}}{2} &\le& \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} \frac{\text{TP}_{ij}^{2}(t)+(P_{ij}^{\text{av}})^{2}}{2} \\ &&+ \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} E_{ij}(t)\\ &&\times\left( \text{TP}_{ij}(t)-P_{ij}^{\text{av}}\right) \end{array} $$
(40)

Rombining (39) and (40) and exploiting (11) yield

$$\begin{array}{@{}rcl@{}} L\left( {\boldsymbol{\Psi}({t + 1})}\right) - L\left( {\boldsymbol{\Psi}(t)}\right) &\le&\ \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} {\frac{{{R_{ij}^{2}}{(t)} + {D_{ij}^{2}}{(t)}}}{2}} \\ &&+ \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} {\frac{\text{TP}_{ij}^{2}(t)+(P_{ij}^{\text{av}})^{2}}{2}} \\ &&+ \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} {E_{ij}}(t)\\ &&\left( \text{TP}_{ij}(t)-P_{ij}^{\text{av}}\right)\\ &&+ \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J}\\ &&\times {{Q_{ij}}(t)\left( {{D_{ij}}(t) - {R_{ij}}(t)}\right)} \end{array} $$
(41)

Taking conditional expectations on Eq. 41, exploiting (12), and subtracting \(\nu \mathbb {E}\left \{D(t)\left | \boldsymbol {\Psi }(t)\right .\right \}\) at both sides, we can prove (14).

Appendix: B

We then review the basic result in Theorem 1, for the proposed ETOA approach, which is given as follows

$$\begin{array}{@{}rcl@{}} &&{\Delta} \left( {\boldsymbol{\Psi} (t)}\right) - \nu\mathbb{E}\left\{D(t) \left|{\boldsymbol{\Psi}(t)}\right.\right\}\\ &\le& C + \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} Q_{ij}(t)\mathbb{E}\left\{D_{ij}(t)-R_{ij}(t)\left|{\boldsymbol{\Psi}(t)}\right.\right\} \\ &&+ \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} {{E_{ij}}}(t) \mathbb{E}\left\{\text{TP}_{ij}(t)-P_{ij}^{\text{av}}\left|{\boldsymbol{\Psi}(t)}\right.\right\} \\ &&- \nu\mathbb{E}\left\{D(t)\left| {\boldsymbol{\Psi}(t)}\right.\right\} \\ &\le& C + \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} Q_{ij}(t)\mathbb{E}\left\{D_{ij}^{*}(t)-R_{ij}^{*}(t)\left|{\boldsymbol{\Psi}(t)}\right.\right\} \\ &&+ \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} {{E_{ij}}}(t) \mathbb{E}\left\{\text{TP}_{ij}^{*}(t)-P_{ij}^{\text{av}}\left|{\boldsymbol{\Psi}(t)}\right.\right\} \\ &&- \nu\mathbb{E}\left\{D^{*}(t)\left|{\boldsymbol{\Psi}(t)}\right.\right\} \end{array} $$
(42)

where the second inequality sign of Eq. 42 holds owing to the fact that the proposed ETOA approach minimizes the RHS of Eq. 14 over all feasible control policy Φ(t) which includes the optimal randomized stationary policy \(\mathbb {\alpha }^{*}(t)\).

Substituting (29) and (30) into (42) and using telescoping sums over all time slots in the above inequality, we obtain the following inequation as δ → 0

$$\begin{array}{@{}rcl@{}} &&\mathbb{E}\left\{L\left( \boldsymbol{\Psi}(t)\right)\right\} - \mathbb{E}\left\{L\left( \boldsymbol{\Psi}(0)\right)\right\} - \nu\sum\limits_{t = 0}^{T-1}\mathbb{E}\left\{D(t)\right\} \\ &\le& TC - \sum\limits_{t = 0}^{T-1}\sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} \vartheta Q_{ij}(t) \\ &&- \sum\limits_{t = 0}^{T-1}\nu\mathbb{E}\left\{D^{*}(t)\right\} \end{array} $$
(43)

(a) Applying the definition of L (Ψ(t)), we can simply the inequality as follows

$$ \frac{1}{2} \sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J}\mathbb{E} \left\{ E_{ij}^{2}(t)\right\} \le TC + T\nu IJA_{\max} + \mathbb{E}\left\{L\left( \boldsymbol{\Psi}(0)\right)\right\} $$
(44)

According to the variance formula \(D\left \{E_{ij}(t)\right \}=\mathbb {E}\left \{E_{ij}^{2}(t)\right \}-\mathbb {E}^{2}\left \{E_{ij}(t)\right \}\) and D {Eij(t)} > 0, we obtain

$$ \mathbb{E}\left\{E_{ij}(t)\right\} \le \sqrt{2TC+ 2T{\nu}IJA_{\max}+ \mathbb{E}\left\{L\left( \boldsymbol{\Psi}(0)\right)\right\}} $$
(45)

Dividing both sides by T and taking a lim inf as T, we can obtain

$$ \lim_{T \rightarrow \infty} \frac{\mathbb{E}\left\{E_{ij}(T)\right\}}{T}= 0 $$
(46)

Hence, virtual energy queues Eij(t) are mean rate stable based on Definition 1 and thus, the time-average energy consumption constraint C1 is satisfied according to Lemma 1. Similarly, we can prove that data queues Qij(t) are mean rate stable as well.

(b) Since the conclusion Qij(t) < Amax + ν can be proven using similar techniques as [13], we omit the detailed proof here for brevity. Considering the fact that \(\mathbb {E}\left \{L\left ({\Psi }(t)\right )\right \} \ge 0\) and Qij(t) ≥ 0, rearranging (43), we obtain the following inequality

$$ \nu\sum\limits_{t = 0}^{T-1} \mathbb{E} \left\{D(t)\right\} \ge T{\nu}D^{*} - TC - \mathbb{E}\left\{L\left( {\Psi}(0)\right)\right\} $$
(47)

Dividing both sides of the above inequality by νT and then taking a limit as T, we can obtain

$$ \lim_{T\to\infty} \frac{1}{T}\sum\limits_{t = 0}^{T-1} \mathbb{E} \left\{D(t)\right\} \ge D^{*} - \frac{C}{\nu} $$
(48)

(c) Rearranging (43), we obtain

$$\begin{array}{@{}rcl@{}} \sum\limits_{t = 0}^{T-1}\sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J}\vartheta Q_{ij}(t) &\le& TC + \mathbb{E}\left\{L\left( {\Psi}(0)\right)\right\} \\ &&+ \nu\sum\limits_{t = 0}^{T-1}\mathbb{E}\left\{D^{*}(t)\right\} \\ &\le& TC + \mathbb{E}\left\{L\left( {\Psi}(0)\right)\right\} \\ &&+ {\nu}TIJA_{\max} \end{array} $$
(49)

Similarly, dividing (49) by 𝜗T and then taking a limit as T, we prove

$$ \lim_{T \to \infty} \frac{1}{T} \sum\limits_{t = 0}^{T-1}\sum\limits_{i = 1}^{I}\sum\limits_{j = 1}^{J} Q_{ij}(t) \le \frac{C+{\nu}IJA_{\max}}{\vartheta} $$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, L., Yin, H., Guo, D. et al. Resource allocation in two-tier small-cell networks with energy consumption constraints. Peer-to-Peer Netw. Appl. 13, 1–15 (2020). https://doi.org/10.1007/s12083-018-0700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-018-0700-y

Keywords

Navigation