Skip to main content
Log in

A secure and lightweight privacy-preserving data aggregation scheme for internet of vehicles

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Data aggregation can effectively improve resource utilization in Internet of Vehicles (IoV), and has attracted broad attention recently. However, because of the particularity of nodes in IoV, data aggregation faces security challenges such as location privacy, data privacy and accuracy of aggregation results. To solve these challenges, in this paper, we propose a secure and lightweight privacy-preserving data aggregation scheme, named SLPDA, for IoV. Specifically, SLPDA employs Chinese Remainder Theorem to map multi-dimensional data to one-dimensional data, and uses masking technology to encrypt data, thus roadside units can realize lightweight data aggregation without plaintext. SLPDA also adopts Identity-based batch authentication technology to reduce authentication overhead. Detailed security analysis indicates that SLPDA can resist various security threats. In addition, the performance evaluations demonstrate that SLPDA is more efficient than the reported schemes in terms of computation complexity and communication overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stergiou C, Psannis KE, Kim BG, Gupta B (2018) Fut Gener Comput Syst 78:964

    Article  Google Scholar 

  2. Kuang B, Fu A, Yu S, Yang G, Su M, Zhang Y (2019) IEEE Internet Things J:1–1

  3. Gope P, Sikdar B (2018) IEEE Internet Things J 6(1):580

    Article  Google Scholar 

  4. Gerla M, Lee EK, Pau G, Lee U (2014) In: 2014 IEEE world forum on internet of things (WF-IoT). IEEE, pp 241–246

  5. Lee U, Magistretti E, Gerla M, Bellavista P, Corradi A (2009) IEEE Trans Veh Technol 58 (2):882

    Article  Google Scholar 

  6. Basudan S, Lin X, Sankaranarayanan K (2017) IEEE Internet Things J 4(3):772

    Article  Google Scholar 

  7. Ni J, Zhang K, Yu Y, Lin X, Shen X (2018) IEEE Trans Veh Technol 67(7):6504

    Google Scholar 

  8. Li SE, Xu S, Deng K, Zhang Q (2016) In: Automotive Air Conditioning. Springer, pp 267–289

  9. Rajaram RN, Ohn-Bar E, Trivedi MM (2016) IEEE Trans Intell Veh 1(4):358

    Article  Google Scholar 

  10. Xu C, Lu R, Wang H, Zhu L, Huang C (2017) Sensors 17(3):500

    Article  Google Scholar 

  11. Lu R, Liang X, Li X, Lin X, Shen X (2012) IEEE Trans Parallel Distrib Syst 23(9):1621

    Article  Google Scholar 

  12. Kong Q, Lu R, Ma M, Bao H (2019) Fut Gener Comput Syst 92:644

    Article  Google Scholar 

  13. Rathore MM, Paul A, Ahmad A, Jeon G (2017) Int J Seman Web Inf Syst (IJSWIS) 13(1):28

    Article  Google Scholar 

  14. Paillier P (1999) In: International Conference on the Theory and Applications of Cryptographic Techniques. Springer, pp 223–238

  15. Lu R, Heung K, Lashkari AH, Ghorbani AA (2017) IEEE Access 5:3302

    Article  Google Scholar 

  16. Ni J, Zhang K, Alharbi K, Lin X, Zhang N, Shen XS (2017) IEEE Trans Smart Grid 8 (5):2483

    Article  Google Scholar 

  17. Jo HJ, Kim IS, Lee DH (2015) IEEE Trans Smart Grid 7(3):1732

    Article  Google Scholar 

  18. Gope P, Sikdar B (2018) IEEE Trans Inf Forensic Secur 14(6):1554

    Article  Google Scholar 

  19. Gope P, Sikdar B (2018) IEEE Internet Things J 5(4):3126

    Article  Google Scholar 

  20. Gope P, Sikdar B (2019) IEEE Systems Journal: 1–10

  21. Kong Q, Lu R, Ma M, Bao H (2017) Sensors 17(8):1829

    Article  Google Scholar 

  22. Yin J, ElBatt T, Yeung G, Ryu B, Habermas S, Krishnan H, Talty T (2004) In: Proceedings of the 1st ACM international workshop on Vehicular ad hoc networks. ACM, 1–9

  23. p-2010-ieee standard for information technology-local and metropolitan area networks-specific requirements-part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications amendment 6: Wireless access in vehicular environments, 2010. http://standards.ieee.org/findstds/standard/802.11p-2010.html (Accessed June 2, 2017)

  24. Boneh DM (2001) Franklin Identity-based encryption from the weil pairing

  25. Choon JC, Cheon JH (2003) In: International workshop on public key cryptography. Springer, pp 18–30

  26. Dingyi P, Arto S, Cunsheng D (1996) Chinese remainder theorem: applications in computing, coding cryptography. World Scientific

  27. Dupont R, Enge A (2002) IACR Cryptol ePrint Arch 2002:136

    Google Scholar 

  28. Yang G, He S, Shi Z, Chen J (2017) IEEE Commun Mag 55(3):86

    Article  Google Scholar 

  29. Saaty TL (1961) Elements of queueing theory: with applications. McGraw-Hill, vol 34203, New York

  30. Castelluccia C, Chan AC, Mykletun E, Tsudik G (2009) ACM Trans Sensor Netw (TOSN) 5(3):20

    Google Scholar 

  31. L. K. Paillier’s homomorphic cryptosystem (java implementation). https://www.csee.umbc.edu/~kunliu1/research/Paillier.html (Accessed November 15, 2018)

  32. De Caro A, Iovino V (2011) In: Proceedings of the 16th IEEE Symposium on Computers and Communications, ISCC 2011. Kerkyra, Corfu, pp 850–855

Download references

Acknowledgments

This article has been awarded by the National Natural Science Foundation of China (61170035, 61272420, 81674099, 61502233), the Fundamental Research Fund for the Central Universities (30916011328, 30918015103), Nanjing Science and Technology Development Plan Project (201805036), and “13th Five-Year” equipment field fund (61403120501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, P., Wang, Y., Gong, B. et al. A secure and lightweight privacy-preserving data aggregation scheme for internet of vehicles. Peer-to-Peer Netw. Appl. 13, 1002–1013 (2020). https://doi.org/10.1007/s12083-019-00849-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-019-00849-6

Keywords

Navigation