Skip to main content

Advertisement

Log in

Power control of D2D communication based on quality of service assurance under imperfect channel information

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

In cellular networks, proximity users establish device-to-device(D2D) links directly under the control of base stations (BSs) for data exchange, and no base station forwarding is required. For the advantages such as lower transmission power, higher data transmission rate, D2D communication has been paid more and more attention. However, the environmental impact of introducing D2D shared spectrum resources has become a major challenge. This paper studies a robust downlink power control scheme with imperfect channel state information (CSI) in D2D communication system. In order to improve the system sum rates, this paper optimizes the transmitting power of D2D users (DUEs) and the base stations through geometric analysis and convex optimization while guaranteeing the quality-of-service (QoS) requirements for both DUEs and cellular users (CUEs). Because of the dynamic characteristics of wireless channel, it is difficult and expensive to acquire CSI without direct communication with BS. On this account, we consider channel uncertainty rather than perfect or instantaneous known CSI. Aiming at enhancing the system robustness, we formulate an outage-based robust optimization problem. The original deterministic the signal-to-interference-noise-ratio (SINR) constraints are substituted with the transformed probability constraints, which transforms the random channel gain into a deterministic one with outage threshold. The simulation results show that the power allocation based on the proposed algorithm can adapt to the complex channel environment and are with better robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bello O, Zeadally S (2014) Intelligent device-to-device communication in the internet of things. IEEE Systems Journal 10(3):1172–1182

    Article  Google Scholar 

  2. Cisco T (2013) Cisco visual networking index: Global mobile data traffic forecast update, 2012-2017. Cisco Public Information 26:27

    Google Scholar 

  3. Liu Z, Gao L, Liu Y, Guan X, Ma K, Wang Y (2019) Efficient QoS support for robust resource allocation in blockchain-based femtocell networks. IEEE Transactions on Industrial Informatics 99:1–10. https://doi.org/10.1109/TII.2019.2939146

    Article  Google Scholar 

  4. Phunchongharn P, Hossain E, Kim DI (2013) Resource allocation for device-to-device communications underlaying lte-advanced networks. IEEE Wireless Communications 20(4):91–100

    Article  Google Scholar 

  5. Asadi A, Wang Q, Mancuso V (2014) A survey on device-to-device communication in cellular networks. IEEE Communications Surveys & Tutorials 16(4):1801–1819

    Article  Google Scholar 

  6. Lin Y, Hsu Y (2000) Multihop cellular: A new architecture for wireless communications. In: Infocom nineteenth joint conference of the IEEE computer & communications societies IEEE, pp 1273–1282

  7. Doppler K, Rinne M, Wijting C, Ribeiro C, Hugl K (2009) Device-to-device communication as an underlay to LTE-advanced networks. IEEE Commun Mag 47(12):42–49

    Article  Google Scholar 

  8. Fodor G, Dahlman E, Mildh G, Parkvall S, Turanyi Z (2012) Design aspects of network assisted device-to-device communications. IEEE Commun Mag 50(3):170–177

    Article  Google Scholar 

  9. Min H, Seo W, Lee J, Park S, Hong D (2011) Reliability improvement using receive mode selection in the device-to-device uplink period underlaying cellular networks. IEEE Trans Wireless Commun 10(2):413–418

    Article  Google Scholar 

  10. Yu C, Tirkkonen O, Doppler K, Ribeiro C (2009) Power optimization of device-to-device communication underlaying cellular communication. In: IEEE international conference on communications, pp 1–5

  11. Chen D, Tang Y, Zhang H, Wang L, Li X (2019) Incremental factorization of big time series data with blind factor approximation. IEEE Transactions on Knowledge and Data Engineering 99:1–16. https://doi.org/10.1109/TKDE.2019.2931687

    Article  Google Scholar 

  12. Gu Y, Zhang Y, Miao P, Zhu H (2015) Matching and cheating in device to device communications underlying cellular networks. IEEE Journal on Selected Areas in Communications 33(10):2156–2166

    Article  Google Scholar 

  13. Zhang R, Xiang C, Yang L, Jiao B (2013) Interference-aware graph based resource sharing for device-to-device communications underlaying cellular networks. In: Wireless communications & networking conference, pp 140–145

  14. Dai Y, Sheng M, Liu J, Cheng N, Shen X, Yang Q (2019) Joint mode selection and resource allocation for D2D-enabled NOMA cellular networks. IEEE Trans Vehicular Technol 68(7):6721–6733

    Article  Google Scholar 

  15. Xu S, Wang H, Tao C, Huang Q, Tao P (2010) Effective interference cancellation scheme for device-to-device communication underlaying cellular networks. In: Vehicular Technology Conference Fall, pp 1–5

  16. Kusaladharma S, Zhang Z, Tellambura C (2019) Interference and outage analysis of random D2D networks underlaying millimeterwave cellular networks. IEEE Transactions on Communications 67(1):778–790

    Article  Google Scholar 

  17. Min H, Jemin L, Sungsoo P, Daesik H (2011) Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks. IEEE Trans Wireless Commun 10(12):3995–4000

    Article  Google Scholar 

  18. Feng D, Lu L, Yi Y, Li GY, Feng G, Li S (2013) Device-to-device communications underlaying cellular networks. IEEE Transactions on Communications 61(8):3541–3551

    Article  Google Scholar 

  19. Kai Y, Wang J, Zhu H, Wang J (2019) Resource allocation and performance analysis of cellular-assisted OFDMA device-to-device communications. IEEE Trans Wireless Commun 18(1):416–431

    Article  Google Scholar 

  20. Rim M, Kang CG (2019) Carrier sensing for ofdma-based D2D group-casting systems. IEEE Trans Vehicular Technol 66(3):2301–2310

    Article  Google Scholar 

  21. Lee N, Lin X, Andrews J et al (2015) Power control for D2D underlaid cellular networks: Modeling, algorithms, and analysis. IEEE Journal on Selected Areas in Communications 33(1):1–13

    Article  Google Scholar 

  22. Liu Z, Wang J, Xia Y, Fan R, Jiang H, Yang H (2016) Power allocation robust to time-varying wireless channels in femtocell networks. IEEE Transactions on Vichicular Technology 65(4):2806–2815

    Article  Google Scholar 

  23. Liu Z, Wang S, Liu Y, Wang Y (2018) Secrecy transmission for femtocell networks against external eavesdropper. IEEE Trans Wireless Commun 17(8):5016–5028

    Article  Google Scholar 

  24. Liu Z, Xie Y, Chan K, Ma K, Guan X (2019) Chance-constrained optimization in D2D-based vehicular communication network. IEEE Trans Vehicular Technol 68(5):5045–5058

    Article  Google Scholar 

  25. Gong S, Wu S, So A, Huang X (2017) Distributionally robust collaborative beamforming in D2D relay networks with interference constraints. IEEE Trans Wireless Commun 16(8):5048–5060

    Article  Google Scholar 

  26. Rezk Z, Alouini M (2012) Ergodic capacity of cognitive radio under imperfect channel state information. IEEE Trans Vehicular Technol 61(5):2108–2119

    Article  Google Scholar 

  27. Liu Z, Liang C, Yuan Y, Guan X (2019) Energy efficient resource allocation based on relay selection and subcarrier pairing with channel uncertainty in cognitive radio network. Computer Networks 161:82–92

    Article  Google Scholar 

  28. Liu Z, Wang J, Xia Y, Yang H (2013) Robust optimisation of power control for femtocell networks. IET Signal Processing 7(5):360–367

    Article  MathSciNet  Google Scholar 

  29. Yu C, Doppler K, Ribeiro C, Tirkkonen O (2009) Performance impact of fading interference to device-to-device communication underlaying cellular networks. In: IEEE International Symposium on Personal, pp 858–862

  30. Janis P, Koivunen V, Ribeiro C, Korhonen J (2009) Interference-aware resource allocation for device-to-device radio underlaying cellular networks. In: IEEE Vehicular Technology Conference, pp 1–5

  31. Chandrasekhar V, Andrews J, Muharemovic T, Shen Z, Gatherer A (2008) Power control in two-tier femtocell networks. IEEE Trans Wireless Commun 8(8):4316–4328

    Article  Google Scholar 

  32. Memmi A, Rezki Z, Alouini M (2017) Device-to-device underlay cellular networks with uncertain channel state information. IEEE Trans Wireless Commun 16(2):1330–1343

    Article  Google Scholar 

  33. Gjendemsjo A, Gesbert D, Oien GE, Kiani SG (2015) Optimal power allocation and scheduling for two-cell capacity maximization. In: International symposium on modeling & optimization in mobile, pp 1–6

  34. Zulhasnine M, Huang C, Srinivasan A (2010) Efficient resource allocation for device-to-device communication underlaying LTE network. In: IEEE international conference on wireless & mobile computing, pp 368–375

Download references

Acknowledgments

This work is partly supported by National Natural Science Foundation of China under grant 61873223 and 61803328, the Natural Science Foundation of Hebei Province under grant F2019203095, F2017203140 and F2017203084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of (11)

The detailed proof process of Eq. 11 is given as follows. Considering the constraint (10b),

$$ \begin{array}{@{}rcl@{}} \begin{array}{ll} Pr\left[\frac{P_{Bi}K_{Bi}L_{Bi}^{-\beta}}{P_{ji}(1-\alpha)|\hat{h}_{ji}|^{2}L_{ji}^{-\delta}+P_{ji}\alpha \tilde{h}_{ji}^{2}L_{ji}^{-\delta}+N_{0}}>\gamma_{B}\right]\geq1-\varepsilon_{c}. \end{array} \end{array} $$

Let \(Y_{1}=\gamma _{B}\alpha L_{ji}^{-\delta }\tilde {h}_{ji}^{2}\), where \(\tilde {h}_{ji}^{2}\ \thicksim E(1)\). Based on the conclusion from Appendix B of [24], we can conclude that the probability density function of Y1 is

$$ \begin{array}{@{}rcl@{}} f(y_{1})=\frac{L_{ji}^{\delta}}{\gamma_{B}\alpha}e^{-\frac{L_{ji}^{\delta}}{\gamma_{B}\alpha}y_{1}}. \end{array} $$
(35)

Then the constraint (10b) is equivalent to the following form,

$$ \begin{array}{@{}rcl@{}} \begin{array}{ll} Pr\left[Y_{1}<\frac{P_{Bi}K_{Bi}L_{Bi}^{-\beta}-\gamma_{B}P_{ji}(1-\alpha)|\hat{h}_{ji}|^{2}L_{ji}^{-\delta}-\gamma_{B}N_{0}}{P_{ji}}\right] \geq1-\varepsilon_{c}. \end{array} \end{array} $$

According to Eq. 35, it is obtained

$$ \begin{array}{@{}rcl@{}} \begin{array}{ll} {\int}_{0}^{\frac{P_{B}K_{Bi}L_{Bi}^{-\beta}-\gamma_{B}[P_{ji}(1-\alpha)|\hat{h}_{ji}|^{2}L_{ji}^{-\delta}+N_{0}]}{P_{ji}}}\frac{{L_{ji}}^{\delta}}{\gamma_{B}\alpha}e^{-\frac{L_{ji}^{\delta}}{\gamma_{B}\alpha}y_{1}}dy_{1} \geq 1 - \varepsilon_{c}. \end{array} \end{array} $$

Then, it holds that

$$ \begin{array}{@{}rcl@{}} e^{-\frac{P_{Bi}K_{Bi}{L_{Bi}}^{-\beta}-\gamma_{B}N_{0}L_{ji}^{-\delta}}{P_{ji}\gamma_{B}\alpha}}+e^{\frac{(1-\alpha)|\hat{h}_{ji}|^{2}}{\alpha}}\leq1+\varepsilon_{c}. \end{array} $$

That is

$$ \begin{array}{@{}rcl@{}} \ln\left( 1+\varepsilon_{c}-e^{\frac{(1-\alpha)|\hat{h}_{ji}|^{2}}{\alpha}}\right)\frac{P_{ji}\gamma_{B}\alpha}{L_{ji}^{\delta}}\geq\gamma_{B}N_{0}-P_{Bi}K_{Bi}L_{Bi}^{-\beta}. \end{array} $$

Finally,

$$ \begin{array}{@{}rcl@{}} \frac{P_{Bi}K_{Bi}L_{Bi}^{-\beta}}{\ln\left( \frac{1}{1+\varepsilon_{c}-e^{\frac{(1-\alpha)|\hat{h}_{ji}|^{2}}{\alpha}}}\right)\frac{\alpha}{L_{ji}^{\delta}}P_{ji}+N_{0}}\geq\gamma_{B}. \end{array} $$

The proof is completed.

Appendix B: Proof of (13)

The proof process of Eq. 13 is similar to Appendix A. Let \(Y_{2}=\alpha L_{jj}^{-\rho }\tilde {h}_{jj}^{2}\), where \(\tilde {h}_{jj}^{2}\ \thicksim E(1)\). The density function of Y2 is \(f(y_{2})=\frac {L_{jj}^{\rho }}{\alpha }e^{-\frac {L_{jj}^{\rho }}{\alpha }y_{2}}\). Then the constraint (10c),

$$ \begin{array}{@{}rcl@{}} Pr \left[\frac{P_{ji}L_{jj}^{-\rho}(1 - \alpha)|\hat{h}_{jj}|^{2}+P_{j,i}\alpha L_{jj}^{-\rho}\tilde{h}_{jj}^{2}}{P_{Bi}K_{Bj}L_{Bj}^{-\kappa}+N_{0}} > \gamma_{D}\right] \geq {1-\varepsilon_{d}}, \end{array} $$

can be transform to the deterministic form as follows,

$$ \begin{array}{@{}rcl@{}} e^{-\frac{(1-\alpha)|\hat{h}_{jj}|^{2}}{\alpha}}-e^{-\frac{(\gamma_{D}P_{Bi}K_{Bj}L_{Bj}^{-\kappa}+\gamma_{D}N_{0})L_{jj}^{\rho}}{P_{ji}\alpha}}\leq\varepsilon_{d}. \end{array} $$

That is,

$$ \begin{array}{@{}rcl@{}} \ln\left( \frac{1}{e^{-\frac{(1-\alpha)|\hat{h}_{jj}|^{2}}\alpha}-\varepsilon_{d}}\right)\frac{\alpha P_{ji}}{L_{jj}^{\rho}} - (\gamma_{D}P_{Bi}K_{Bj}L_{Bj}^{-\kappa} + \gamma_{D}N_{0})\geq0. \end{array} $$

Finally,

$$ \begin{array}{@{}rcl@{}} \frac{{\ln\left( \frac{1}{e^{-\frac{(1-\alpha)|\hat{h}_{jj}|^{2}}\alpha}-\varepsilon_{d}}\right)\frac{\alpha }{L_{jj}^{\rho}}}P_{ji}}{P_{Bi}K_{Bj}L_{Bj}^{-\kappa}+N_{0}}\geq\gamma_{D}. \end{array} $$

The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, X., Yuan, Y. et al. Power control of D2D communication based on quality of service assurance under imperfect channel information. Peer-to-Peer Netw. Appl. 13, 1327–1339 (2020). https://doi.org/10.1007/s12083-019-00864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-019-00864-7

Keywords

Navigation