Skip to main content
Log in

DeepNav: A scalable and plug-and-play indoor navigation system based on visual CNN

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

With the proliferation of smartphones, recent years have witnessed the rapid development of smartphone-based indoor navigation systems. However, existing solutions either bear high deployment cost or cannot support large-scale navigation. A scalable and plug-and-play indoor navigation system is still highly desirable. In this paper, we propose DeepNav, a new indoor navigation system that fully uses visual CNN to realize large-scale navigation. DeepNav adopts a single-pilot deployment scheme to realize fast deployment. It divides the indoor area into dense sub-areas to simplify image-based location matching while ensuring reasonable resolution. Practical realization of DeepNav entails a set of key challenges, e.g., invalid image recognition, classification of thousands of labels and under-fitting. In order to solve these challenges, we propose invalid image filter, subgroup sigmoid layer and movable object filter, respectively, for DeepNav. Finally, we implement a prototype of DeepNav on commercial smartphones. Experimental results demonstrate that DeepNav can be quickly deployed (e.g., within an hour in a 4-storey building) with an average localization error of 2.3 meters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Zheng Y, Shen G, Li L, Zhao C, Li M, Zhao F (2017) Travi-navi: Self-deployable indoor navigation system. IEEE/ACM Trans Netw 25(5):2655

    Article  Google Scholar 

  2. Wang J, Zhang X, Gao Q, Yue H, Wang H (2017) Device-free wireless localization and activity recognition: A deep learning approach. IEEE Trans Veh Technol PP(99):1

    Google Scholar 

  3. Abdelnasser H, Mohamed R, Elgohary A, Alzantot M, Wang H, Sen S, Choudhury RR, Youssef M (2016) SemanticSLAM: Using environment landmarks for unsupervised indoor localization. IEEE Trans Mob Comput 15(7):1770

    Article  Google Scholar 

  4. Alzantot M, Youssef M (2012) Crowdinside: automatic construction of indoor floorplans. In: Proceedings of the 20th international conference on advances in geographic information systems. ACM, pp 99–108

  5. Yang Z, Wu C, Liu Y (2012) Locating in fingerprint space: wireless indoor localization with little human intervention. In: Proceedings of the 18th annual international conference on mobile computing and networking. ACM, pp 269–280

  6. Chen S, Li M, Ren K, Fu X, Qiao C (2015) Rise of the indoor crowd: Reconstruction of building interior view via mobile crowdsourcing. In: Proceedings of the 13th ACM conference on embedded networked sensor systems. ACM, pp 59–71

  7. Gao R, Zhao M, Ye T, Ye F, Wang Y, Bian K, Wang T, Li X (2014) Jigsaw: Indoor floor plan reconstruction via mobile crowdsensing. In: Proceedings of the 20th annual international conference on Mobile computing and networking. ACM, pp 249–260

  8. Chen S, Li M, Ren K, Qiao C (2015) Crowd map: Accurate reconstruction of indoor floor plans from crowdsourced sensor-rich videos. In: 2015 IEEE 35th International conference on distributed computing systems. IEEE, pp 1–10

  9. Mur-Artal R, Montiel JMM, Tardos JD (2015) ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans Robot 31(5):1147

    Article  Google Scholar 

  10. Dong J, Noreikis M, XIAO Y, Yla-Jaaski A (2018) ViNav: A vision-based indoor navigation system for smartphones. IEEE Trans Mob Comput

  11. Shu Y, Kang GS, He T, Chen J (2015) Last-mile navigation using smartphones. In: International conference on mobile computing and networking, pp 512–524

  12. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  13. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

  14. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861

  15. Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, et al. (2017) Speed/accuracy trade-offs for modern convolutional object detectors. In: IEEE CVPR, vol 4

  16. Ma N, Zhang X, Zheng HT, Sun J (2018) Shufflenet v2: Practical guidelines for efficient cnn architecture design. arXiv:1807.11164

  17. Wei Y, Xia W, Lin M, Huang J, Ni B, Dong J, Zhao Y, Yan S (2015) HCP: A flexible CNN framework for multi-label image classification. IEEE Trans Pattern Anal Mach Intell 38(9):1901

    Article  Google Scholar 

  18. Lin TY, Goyal P, Girshick R, He K, Dollár P. (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988

  19. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  20. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  21. Google (2018) Tensorflow. https://www.tensorflow.org/

  22. Yin Z, Wu C, Yang Z, Liu Y (2017) Peer-to-peer indoor navigation using smartphones. IEEE J Select Areas Commun PP(99):1

    Google Scholar 

  23. Yin Z, Wu C, Yang Z, Lane N, Liu Y (2017) ppNav: Peer-to-peer indoor navigation for smartphones. In: IEEE international conference on parallel and distributed systems, pp 104–111

  24. Zhuang Y, Syed Z, Li Y, Elsheimy N (2016) Evaluation of two wifi positioning systems based on autonomous crowd sourcing on handheld devices for indoor navigation. IEEE Trans Mob Comput 15 (8):1982

    Article  Google Scholar 

  25. Wang X, Gao L, Mao S, Pandey S (2017) CSI-Based fingerprinting for indoor localization: a deep learning approach. IEEE Trans Veh Technol 66(1):763

    Google Scholar 

  26. Zhang C, Subbu KP, Luo J, Wu J (2015) GROPING: Geomagnetism and crowdsensing powered indoor navigation. IEEE Trans Mob Comput 14(2):387

    Article  Google Scholar 

  27. He S, Kang GS (2017) Geomagnetism for smartphone-based indoor localization: challenges, advances, and comparisons. Acm Comput Surv 50(6):1

    Article  MathSciNet  Google Scholar 

  28. Li Z, Shu Y, Karlsson BF, Lin Y, Moscibroda T (2017) Demo: Towards flexible and scalable indoor navigation. In: International conference on mobile computing and networking, pp 495–497

  29. Liu Z, Zhang L, Liu Q, Yin Y, Cheng L, Zimmermann R (2017) Fusion of magnetic and visual sensors for indoor localization: infrastructure-free and more effective. IEEE Trans Multimed 19(4):874

    Article  Google Scholar 

  30. Zhu Y, Mottaghi R, Kolve E, Lim JJ, Gupta A, Fei-Fei L, Farhadi A (2017) Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3357–3364

  31. Kahn G, Villaflor A, Ding B, Abbeel P, Levine S (2018) Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation. In: 2018 IEEE International conference on robotics and automation (ICRA). IEEE, pp 1–8

  32. Shu Y, Bo C, Shen G, Zhao C, Li L, Zhao F (2015) Magicol: Indoor localization using pervasive magnetic field and opportunistic wifi sensing. IEEE J Select Areas Commun 33(7):1443

    Article  Google Scholar 

  33. Li Y, Zhuang Y, Zhang P, Lan H, Niu X, El-Sheimy N (2017) An improved inertial/wifi/magnetic fusion structure for indoor navigation. Inf Fusion 34(C):101

    Article  Google Scholar 

  34. Teng X, Guo D, Zhou X, Liu Z (2015) Poster: An indoor-outdoor navigation service for subway transportation systems. In: ACM Conference on embedded networked sensor systems, pp 415–416

  35. Wu FJ (2018) A sensor-assisted emergency guiding system: sensor-centric or user-centric?. IEEE Trans Veh Technol 67(2):1598

    Article  Google Scholar 

  36. Zhuang Y, Yang J, Qi L, Li Y, Cao Y, El-Sheimy N (2017) A pervasive integration platform of low-cost MEMS sensors and wireless signals for indoor localization. IEEE Internet Things J PP(99):1

    Google Scholar 

  37. Atia MM, Liu S, Nematallah H, Karamat TB, Noureldin A (2015) Integrated indoor navigation system for ground vehicles with automatic 3-d alignment and position initialization. IEEE Trans Veh Technol 64(4):1279

    Article  Google Scholar 

  38. Tsirmpas C, Rompas A, Fokou O, Koutsouris D (2015) An indoor navigation system for visually impaired and elderly people based on Radio Frequency Identification (RFID). Inform Sci 320(C):288

    Article  Google Scholar 

  39. Jiang Y, Li Z, Wang J (2017) PTrack: Enhancing the applicability of pedestrian tracking with wearables. In: IEEE international conference on distributed computing systems, pp 2193–2199

  40. Xiang L, Tai TY, Li B, Li B (2017) Tack: learning towards contextual and ephemeral indoor localization with crowdsourcing. IEEE J Select Areas Commun PP(99):1

    Google Scholar 

  41. Liu K, Wu D, Li X (2016) Enhancing smartphone indoor localization via opportunistic sensing. In: IEEE International conference on sensing, communication, and networking, pp 1–9

  42. Huang W, Xiong Y, Li XY, Lin H, Mao X, Yang P, Liu Y, Wang X (2015) Swadloon: Direction finding and indoor localization using acoustic signal by shaking smartphones. IEEE Trans Mob Comput 14(10):2145

    Article  Google Scholar 

  43. Zhao Z, Wang J, Zhao X, Peng C, Guo Q, Wu B (2017) NaviLight: Indoor localization and navigation under arbitrary lights. In: INFOCOM 2017 - IEEE conference on computer communications IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Gong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Ren, J. & Zhang, Y. DeepNav: A scalable and plug-and-play indoor navigation system based on visual CNN. Peer-to-Peer Netw. Appl. 14, 3718–3736 (2021). https://doi.org/10.1007/s12083-021-01216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-021-01216-0

Keywords

Navigation