Skip to main content

Advertisement

Log in

Understanding MEC empowered vehicle task offloading performance in 6G networks

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

The sixth-generation (6G) vehicular networks are expected to be much more large-scaled, heterogeneous, dynamic and intelligent, and are expected to meet diverse Quality of Service (QoS) and Quality of Experience (QoE) requirements from vehicular applications. This paper aims to quantitatively investigate the capability of the MEC-Cloud orchestration paradigm in provisioning heterogeneous and priority 6G-V2X (Vehicle-to-Everything) service to vehicles. We develop a scalable analytic model for capturing the 6G V2X service process, in which a latency-sensitive vehicle task can dynamically migrate between MEC servers due to vehicle mobility. Formulas for calculating performance metrics, including task rejection probability and mean task response delay, are derived. Simulation results are combined with the numerical solution to demonstrate the approximate accuracy of the model and metric formulas. Numerical analysis is applied to illustrate the impact of various parameters on the 6G V2X service performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Letaief KB, Chen W, Shi Y, Zhang J, Zhang YA (2020) The Roadmap to 6G: AI Empowered Wire-less Networks. In: IEEE Communications Magazine

  2. Tang F, Kawamoto Y, Kato N, Liu J (2020) Future Intelligent and Secure Vehicular Network Toward 6G: Ma-chine-Learning Approaches. Proc IEEE 108(2):292–307

    Article  Google Scholar 

  3. Strinati EC, Barbarossa S, Gonzalez-Jimenez JL, Cassiau DKN, Maret L, Dehos C (2019) 6G: The Next Frontier: From Holographic Messaging to Ar-tificial Intelligence Using Subterahertz and Visible Light Communication. In: IEEE Veh Technol Mag

  4. Sun Y, Guo X, Song J, Zhou S, Jiang Z, Liu X, Niu Z (2019) Adaptive Learning-Based Task Offloading for Vehicular Edge Computing Systems. IEEE Trans Veh Technol 68(4):3061–3074

    Article  Google Scholar 

  5. Yang Y, Chang X, Jia Z, Han Z, Han Z (2020) Processing in Memory Assisted MEC 3C Resource Allocation for Computation Offloading. In: The 20th International Conference on Algorithms and Architectures for Parallel Processing: 695–709

  6. Kato N, Mao B, Tang F, Kawamoto Y, Liu J (2020) Ten Challenges in Advancing Machine Learning Technologies toward 6G. IEEE Wirel Commun 27(3):96–103

    Article  Google Scholar 

  7. Moubayed A, Shami A, Heidari P, Larabi A, Brunner R (2021) Edge-enabled V2X Service Placement for Intelligent Transportation Systems. IEEE Trans Mob Comput 20(4):1380–1392

  8. Kherraf N, Alameddine HA, Sharafeddine S, Assi CM, Ghrayeb A (2019) Optimized Provisioning of Edge Computing Resources With Heterogeneous Workload in IoT Networks. IEEE Trans Netw Serv Manag 16(2):459–474

    Article  Google Scholar 

  9. Zhang S, Liu J, Guo H, Qi M, Kato N (2020) Envisioning Device-to-Device Communications in 6G. IEEE Netw 34(3):86–91

    Article  Google Scholar 

  10. Chang X, Xia R, Muppala JK, Trivedi KS, Liu J (2018) Effective Modeling Approach for IaaS Data Center Performance Analysis under Heterogeneous Workload. IEEE Trans Cloud Comput 6(4):991–1003

    Article  Google Scholar 

  11. Liu B, Chang X, Liu B, Chen Z (2017) Performance Analysis Model for Fog Services under Multiple Resource Types. DSA 2017:110–117

    Google Scholar 

  12. Dai H, Zeng X, Yu Z, Wang T (2019) A scheduling algorithm for autonomous driving tasks on mobile edge computing servers. J Syst Archit 94:14–23

    Article  Google Scholar 

  13. Li L, Li Y, Hou R (2017) A Novel Mobile Edge Computing-Based Architecture for Future Cellular Vehicular Networks. WCNC 1–6

  14. Fantacci R, Picano B (2020) Performance Analysis of a Delay Constrained Data Offloading Scheme in an Integrated Cloud-Fog-Edge Computing System. IEEE Trans Veh Technol 69(10):12004–12014

  15. Jiang L, Chang X, Mišić JV, Mišić VB, Yang R (2021) Performance analysis of heterogeneous cloud-edge services: A modeling approach. Peer Peer Netw Appl 14(1):151–163

  16. Zheng Z, Wang L, Zhu F, Liu L (2021) Potential technologies and applications based on deep learning in the 6G networks. Comput Electr Eng 95:107373

  17. Kafhali SE, Salah K (2018) Performance analysis of multi-core VMs hosting cloud SaaS applications. Comput Stand Interfaces 55:126–135

    Article  Google Scholar 

  18. Ghosh R, Longo F, Naik VK, Trivedi KS (2013) Modeling and performance analysis of large scale IaaS Clouds. Future Gener Comput Syst 29(5):1216–1234

    Article  Google Scholar 

  19. Wu H, Wolter K (2018) Stochastic Analysis of Delayed Mobile Offloading in Heterogeneous Networks. IEEE Trans Mob Comput 17(2):461–474

    Article  Google Scholar 

  20. Jiang L, Chang X, Yang R, Mišić JV, Mišić VB (2020) Model-Based Comparison of Cloud-Edge Computing Resource Allocation Policies. Comput J 63(10):1564–1583

  21. Kafhali SE, Salah K (2017) Efficient and dynamic scaling of fog nodes for IoT devices. J Supercomput 73(12):5261–5284

    Article  Google Scholar 

  22. Whaiduzzaman M, Naveed A, Gani A (2018) MobiCoRE: Mobile Device Based Cloudlet Resource Enhancement for Optimal Task Response. IEEE Trans Serv Comput 11(1):144–154

    Article  Google Scholar 

  23. Chang X, Shi Y, Zhang Z, Xu Z, Trivedi K (2020) Job Completion Time under Migration-based Dynamic Platform Technique. IEEE Trans Serv Comput

  24. Chen L, Zhou S, Xu J (2018) Computation Peer Offloading for Energy-Constrained Mobile Edge Computing in Small-Cell Networks. IEEE ACM Trans Netw 26(4):1619–1632

    Article  Google Scholar 

  25. Tran TX, Pompili D (2019) Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks. IEEE Trans Veh Technol 68(1):856–868

    Article  Google Scholar 

  26. Zhang W, Zhang Z, Zeadally S, Chao H, Leung VCM (2020) Energy-efficient Workload Allocation and Computation Resource Configuration in Distributed Cloud/Edge Computing Systems With Stochastic Workloads. IEEE J Sel Areas Commun 38(6):1118–1132

    Article  Google Scholar 

  27. Zhang K, Mao Y, Leng S, He Y, Zhang Y (2017) Mobile-edge computing for vehicular networks: A promising network paradigm with predictive offloading. IEEE Veh Technol Mag 12(2):36–44

    Article  Google Scholar 

  28. Xiao Z, Dai X, Jiang H, Wang D, Chen H, Yang L, Zeng F (2020) Vehicular Task Offloading via Heat-Aware MEC Cooperation Using Game-Theoretic Method. IEEE Internet Things J 7(3):2038–2052

    Article  Google Scholar 

  29. Neto JLD, Yu S, Macedo DF, Nogueira JMS, Langer R, Secci S (2018) ULOOF: A User Level Online Offloading Framework for Mobile Edge Computing. IEEE Trans Mob Comput 17(11):2660–2674

    Article  Google Scholar 

  30. Cui T, Hu Y, Shen B, Chen Q (2019) Task Offloading Based on Lyapunov Optimization for MEC-Assisted Vehicular Platooning Networks. Sensors 19(22):4974

    Article  Google Scholar 

  31. Huang M, Liu W, Wang T, Liu A, Zhang S (2020) A Cloud-MEC Collaborative Task Offloading Scheme With Service Orchestration. IEEE Internet Things J 7(7):5792–5805

    Article  Google Scholar 

  32. Saeik F, Avgeris M, Spatharakis D, Santi N, Dechouniotis D, Violos J, Leivadeas A, Athanasopoulos N, Mitton N, Papavassiliou S (2021) Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions. Comput Networks 195:108177

  33. Yıldırım MS, Aydın MM, Gökkuş Ü (2020) Simulation optimization of the berth allocation in a container terminal with flexible vessel priority management. Marit Policy Manag 47(6):833–848

    Article  Google Scholar 

  34. Maplesoft (2021) Maple. http://www.maplesoft.com/products/maple

  35. Erman J, Gerber A, Hajiaghayi MT, Pei D, Sen S, Spatscheck O (2011) To Cache or Not to Cache: The 3G Case. IEEE Internet Comput 15(2):27–34

    Article  Google Scholar 

  36. Tran TX, Hajisami A, Pandey P, Pompili D (2017) Collaborative Mobile Edge Computing in 5G Networks: New Paradigms, Scenarios, and Challenges. IEEE Commun Mag 55(4):54–61

    Article  Google Scholar 

  37. Rejiba Z, Masip-Bruin X, Marín-Tordera E (2019) A Survey on Mobility-Induced Service Migration in the Fog, Edge, and Related Computing Paradigms. ACM Comput Surv 52(5):1–33

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the Fundamental Research Funds for Central Universities under Grant 2020YJS041 and in part by the National Natural Science Foundation of China under Grant U1836105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 407 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Chang, X., Mišić, J. et al. Understanding MEC empowered vehicle task offloading performance in 6G networks. Peer-to-Peer Netw. Appl. 15, 1090–1104 (2022). https://doi.org/10.1007/s12083-021-01285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-021-01285-1

Index Terms

Navigation