Skip to main content
Log in

Quantitative understanding serial-parallel hybrid sfc services: a dependability perspective

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Network function virtualization (NFV) has been explored to be integrated with multi-access edge computing (MEC) to facilitate the development of 5G (fifth-generation) network. Latency-sensitive applications can be deployed as serial-parallel hybrid service function chains (SP-SFCs) in the MEC-NFV environment. SP-SFCs are deployed on resource-limited devices in the edge and therefore are vulnerable to software aging, which can reduce the SFC service dependability. Rejuvenation technique can mitigate the impact of software aging but its effectiveness is influenced by the rejuvenation trigger interval. This paper explores a semi-Markov model approach to quantitatively evaluate the impact of different rejuvenation trigger intervals on the SFC service dependability in terms of reliability and availability. In contrast to the existing studies, our model captures the behaviors of an SP-SFC system consisting of any number of SFs from suffering from software aging until recovery under the condition that time intervals of failure and recovery events follow general distributions. Our model and formulas are verified by developing a simulator. The results of numerical experiments show the optimal rejuvenation trigger intervals, which can help service providers to maximize the benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hsieh H-C, Chen J-L, Benslimane A (2018) 5G virtualized multi-access edge computing platform for IoT applications. J Netw Comput Appl 115:94–102

    Article  Google Scholar 

  2. Sonkoly B, Haja D, Németh B, Szalay M, Czentye J, Szabó R, Ullah R, Kim B-S, Toka L (2020) Scalable edge cloud platforms for IoT services. J Netw Comput Appl 170

    Article  Google Scholar 

  3. Fang L, Zhang X, Sood K, Wang Y, Shui Yu (2020) Reliability-aware virtual network function placement in carrier networks. J Netw Comput Appl 154

    Article  Google Scholar 

  4. Zhang Y, Anwer B, Gopalakrishnan V, Han B, Reich J, Shaikh A, Zhang ZL (2017) ParaBox: exploiting parallelism for virtual network functions in service chaining. SOSR 143–149

  5. Luo J, Li J, Jiao L, Cai J (2021) On the effective parallelization and near-optimal deployment of service function chains. IEEE Trans Parallel Distributed Syst 32(5):1238–1255

    Article  Google Scholar 

  6. Lin IC, Yeh YH, Lin KCJ (2021) Toward optimal partial parallelization for service function chaining. IEEE/ACM Trans Netw (Early Access)

  7. Yue Yi, Cheng Bo, Li B, Wang M, Liu X (2020) Throughput optimization VNF placement for mapping SFC requests in MEC-NFV enabled networks. MobiCom 90(1–90):3

    Google Scholar 

  8. Silva L, Madeira H, Silva JG (2006) Software aging and rejuvenation in a SOAP-based server. NCA 56–65

  9. Matias R, Andrzejak A, Machida F, Elias D, Trivedi KS (2014) A systematic differential analysis for fast and robust detection of software aging. SRDS 311–320

  10. Grottke M, Li L, Vaidyanathan K, Trivedi KS (2006) Analysis of software aging in a web server. IEEE Trans Reliab 55(3):411–420

    Article  Google Scholar 

  11. Cotroneo D, Natella R, Pietrantuono R, Russo S (2010) Software aging analysis of the linux operating system. ISSRE 71–80

  12. Long Qu, Khabbaz M, Assi C (2018) Reliability-aware service chaining in carrier-grade softwarized networks. IEEE J Sel Areas Commun 36(3):558–573

    Article  Google Scholar 

  13. Engelmann A, Jukan A (2018) A reliability study of parallelized VNF chaining. ICC 1–6

  14. Wang M, Cheng B, Wang S, Chen J (2021) Availability-and traffic-aware placement of parallelized SFC in data center networks. IEEE Trans Netw Serv Manag (Early Access)

  15. Yang D-Y, Wu CH (2021) Evaluation of the availability and reliability of a standby repairable system incorporating imperfect switchovers and working breakdowns. Reliab Eng Syst Saf 207

    Article  Google Scholar 

  16. Rui L, Chen X, Wang X, Gao Z, Qiu X, Wang S (2019) Multiservice reliability evaluation algorithm considering network congestion and regional failure based on petri net. IEEE Trans Serv Comput (Early Access)

  17. Di Mauro M, Longo M, Postiglione F (2020) Availability evaluation of multi-tenant service function chaining infrastructures by multidimensional universal generating function. IEEE Trans Serv Comput (Early Access)

  18. Torquato M, Maciel P, Vieira M (2020) Availability and reliability modeling of VM migration as rejuvenation on a system under varying workload. Softw Qual J 28(1):59–83

    Article  Google Scholar 

  19. Zhu H, Bai J, Chang X, Misic J, Misic V, Yang Y (2020) Stochastic model-based quantitative analysis of edge UPF service dependability. ICA3PP (2):619–632

  20. Bai J, Chang X, Machida F, Trivedi KS, Han Z (2020) Analyzing software rejuvenation techniques in a virtualized system: Service provider and user views. IEEE Access 8:6448–6459

    Article  Google Scholar 

  21. Bai J, Chang X, Ning G, Zhang Z, Trivedi KS (2020) Service availability analysis in a virtualized system: a markov regenerative model approach. IEEE Trans Cloud Comput (Early Access)

  22. Bai J, Chang X, Trivedi KS, Han Z (2021) Resilience-driven quantitative analysis of vehicle platooning service. IEEE Trans Veh Technol 70(6):5378–5389

    Article  Google Scholar 

  23. Guedes E, Maciel P (2019) Stochastic model for availability analysis of service function chains using rejuvenation and live migration. ISSRE Workshops 211–217

  24. Tola B, Nencioni G, Helvik BE (2019) Network-aware availability modeling of an end-to-end NFV-enabled service. IEEE Trans Netw Serv Manag 16(4):1389–1403

    Article  Google Scholar 

  25. Cai J, Huang Z, Luo J, Liu Y, Zhao H, Liao L (2020) Composing and deploying parallelized service function chains. J Netw Comput Appl 163

    Article  Google Scholar 

  26. Xie W, Hong Y, Trivedi KS (2005) Analysis of a two-level software rejuvenation policy. Reliab Eng Syst Saf 87(1):13–22

    Article  Google Scholar 

  27. Machida F, Xiang J, Tadano K, Maeno Y (2017) Lifetime extension of software execution subject to aging. IEEE Trans Reliab 66(1):123–134

    Article  Google Scholar 

  28. Cziva R, Pezaros DP (2017) Container network functions: Bringing NFV to the network edge. IEEE Commun Mag 55(6):24–31

    Article  Google Scholar 

  29. Trubiani C, Meedeniya I, Cortellessa V, Aleti A, Grunske L (2013) Model-based performance analysis of software architectures under uncertainty. QoSA 69–78

  30. Trivedi KS, Bobbio A (2017) Reliability and availability engineering: Modeling, analysis, and applications. Cambridge University Press

  31. Tola B, Jiang Y, Helvik BE (2021) Model-driven availability assessment of the NFV-MANO with software rejuvenation. IEEE Trans Netw Serv Manag 18(3):2460–2477

    Article  Google Scholar 

  32. Maplesoft: Maple (2017). https://www.maplesoft.com/support/install/maple2017_install.html. Accessed 24 Dec 2021

Download references

Acknowledgements

The work of Jing Bai, Xiaolin Chang and Zhen Han was supported by Beijing Municipal Natural Science Foundation (No. M22037).  

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this section, we give the detailed process for calculating SFC service availability mentioned in Sect. 3.4 of the main paper. The notations used in this appendix are defined in Table 3 of the main paper.

The non-null elements of the TPM \({\text{P}}_{PS}\) are given by Eqs. (8)–(24),

$$p_{{PS_{0} PS_{2i + 1} }} = \int_{0}^{\infty } {\prod\nolimits_{{r \in B_{i}^{^{\prime}} }} {{(}1 - F_{{{\text{as}}r}} {(}t{))}} \prod\nolimits_{j \in C} {{(}1 - F_{{{\text{ap}}j}} {(}t{))}} dF_{{{\text{as}}i}} } {(}t{)}$$
(8)
$$p_{{PS_{0} PS_{2n + 3j} }} = \int_{0}^{\infty } {\prod\nolimits_{i \in B} {{(}1 - F_{{{\text{as}}i}} {(}t{))}} \prod\nolimits_{{r^{\prime} \in C_{j}^{^{\prime}} }} {{(}1 - F_{{{\text{ap}}r^{\prime}}} {(}t{))}} dF_{{{\text{ap}}j}} } {(}t{)}$$
(9)
$$p_{{PS_{2n + 3j + 1} PS_{2} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{fdp}}j}} {(}t{))(}1 - F_{{{\text{mp}}j}} {(}t{))}dF_{{{\text{dp}}j}} } {(}t{)}$$
(10)
$$p_{{PS_{2n + 3j + 1} PS_{2n + 3j + 2} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{mp}}j}} {(}t{))(}1 - F_{{{\text{dp}}j}} {(}t{))}dF_{{{\text{fdp}}j}} } {(}t{)}$$
(11)
$$p_{{PS_{2n + 3j + 1} PS_{0} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{fdp}}j}} {(}t{))(}1 - F_{{{\text{dp}}j}} {(}t{))}dF_{{{\text{mp}}j}} } {(}t{)}$$
(12)
$$p_{{PS_{2i + 2} PS_{{2}} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{ms}}i}} {(}t{))(}1 - F_{{{\text{fds}}i}} {(}t{))}dF_{{{\text{ds}}i}} } {(}t{)}$$
(13)
$$p_{{PS_{2i + 2} PS_{1} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{ms}}i}} {(}t{))(}1 - F_{{{\text{ds}}i}} {(}t{))}dF_{{{\text{fds}}i}} } {(}t{)}$$
(14)
$$p_{{PS_{2i + 2} PS_{0} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{fds}}i}} {(}t{))(}1 - F_{{{\text{ds}}i}} {(}t{))}dF_{{{\text{ms}}i}} } {(}t{)}$$
(15)
$$p_{{PS_{2n + 3j} PS_{2} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{p}}j}} {(}t{))(}1 - F_{{{\text{fp}}j}} {(}t{))}dF_{{{\text{dp}}j}} } {(}t{)}$$
(16)
$$p_{{PS_{2n + 3j} PS_{2n + 3j + 2} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{dp}}j}} {(}t{))(}1 - F_{{{\text{p}}j}} {(}t{))}dF_{{{\text{fp}}j}} } {(}t{)}$$
(17)
$$p_{{PS_{2i + 1} PS_{2} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{fs}}i}} {(}t{))(}1 - F_{{{\text{s}}i}} {(}t{))}dF_{{{\text{ds}}i}} } {(}t{)}$$
(18)
$$p_{{PS_{2i + 1} PS_{1} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{ds}}i}} {(}t{))(}1 - F_{{{\text{s}}i}} {(}t{))}dF_{{{\text{fs}}i}} } {(}t{)}$$
(19)
$$p_{{PS_{2n + 3j} PS_{2n + 3j + 1} }} = 1 - p_{{PS_{2n + 3j} PS_{2n + 3j + 2} }} - p_{{PS_{2n + 3j} PS_{2} }}$$
(20)
$$p_{{PS_{2i + 1} PS_{2i + 2} }} = 1 - p_{{PS_{2i + 1} PS_{1} }} - p_{{PS_{2i + 1} PS_{2} }}$$
(21)
$$p_{{PS_{2n + 3j + 2} PS_{0} }} = 1$$
(22)
$$p_{{PS_{2} PS_{0} }} = 1$$
(23)
$$p_{{PS_{1} PS_{0} }} = 1$$
(24)

where \(B_{i}^{{\prime}} = {{\{ }}\left. r \right|0 < r \le n{,}r \ne i{{\} ,}}\)\(C_{j}^{{\prime}} = {{\{ }}\left. {r{^{\prime}}} \right|0 < r{^{\prime}} \le m,r{^{\prime}} \ne j{{\} }}\)\(B = {{\{ }}\left. i \right|0 < i \le n{{\} ,}}\) and \(C = {{\{ }}\left. j \right|0 < j \le m{{\} }}\). The equations of calculating the steady-state probability \(V_{{PS_{i} }}\) of the EDTMC at system state \(PS_{i}\) are given by Eqs. (25)–(32),

$$\begin{aligned} V_{{PS_{2} }} & = {(}\sum\nolimits_{i \in B} {p_{{PS_{0} PS_{2i + 1} }} p_{{PS_{2i + 1} PS_{2} }} }\\ & + \sum\nolimits_{j \in C} {p_{{PS_{0} PS_{2n + 3j} }} p_{{PS_{2n + 3j} PS_{2} }} } \\ & + \sum\nolimits_{j \in C} {p_{{PS_{0} PS_{2n + 3j} }} p_{{PS_{2n + 3j} PS_{2n + 3j + 1} }} p_{{PS_{2n + 3j + 1} PS_{2} }} } {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \\ & + \sum\nolimits_{i \in B} {p_{{PS_{0} PS_{2i + 1} }} p_{{PS_{2i + 1} PS_{2i + 2} }} p_{{PS_{2i + 2} PS_{2} }} } {)}/W \end{aligned}$$
(25)
$$\begin{aligned} V_{{PS_{2n + 3j + 2} }} & = {(}p_{{PS_{0} PS_{2n + 3j} }} p_{{PS_{2n + 3j} PS_{2n + 3j + 2} }} \\ & + p_{{PS_{0} PS_{2n + 3j} }} p_{{PS_{2n + 3j} PS_{2n + 3j + 1} }} p_{{PS_{2n + 3j + 1} PS_{2n + 3j + 2} }} {)}/W \end{aligned}$$
(26)
$$\begin{aligned} V_{{PS_{1} }} & = {(}\sum\nolimits_{i \in B} {p_{{PS_{0} PS_{2i + 1} }} p_{{PS_{2i + 1} PS_{1} }} } \\ & + \sum\nolimits_{i \in B} {p_{{PS_{0} PS_{2i + 1} }} p_{{PS_{2i + 1} PS_{2i + 2} }} p_{{PS_{2i + 2} PS_{1} }} } {)}/W \end{aligned}$$
(27)
$$V_{{PS_{2n + 3j + 1} }} = p_{{PS_{0} PS_{2n + 3j} }} p_{{PS_{2n + 3j} PS_{2n + 3j + 1} }} /W$$
(28)
$$V_{{PS_{2i + 2} }} = {(}p_{{PS_{0} PS_{2i + 1} }} p_{{PS_{2i + 1} PS_{2i + 2} }} {)}/W$$
(29)
$$V_{{PS_{2n + 3j} }} = p_{{PS_{0} PS_{2n + 3j} }} /W$$
(30)
$$V_{{PS_{2i + 1} }} = p_{{PS_{0} PS_{2i + 1} }} /W$$
(31)
$$V_{{PS_{0} }} = 1/W$$
(32)

where \(W = \sum_{i \in B} {p_{{PS_{0} PS_{2i + 1} }} } + \sum_{i \in B} {p_{{PS_{0} PS_{2i + 1} }} p_{{PS_{2i + 1} PS_{2i + 2} }} p_{{PS_{2i + 2} PS_{2} }} } {\kern 1pt} + 1\)

$$+ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\nolimits_{j \in C} {p_{{PS_{0} PS_{2n + 3j} }} p_{{PS_{2n + 3j} PS_{2n + 3j + 1} }} p_{{PS_{2n + 3j + 1} PS_{2n + 3j + 2} }} + {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\nolimits_{i \in B} {p_{{PS_{0} PS_{2i + 1} }} } } {\kern 1pt}$$
$$p_{{PS_{2i + 2} PS_{1} }} p_{{PS_{2i + 1} PS_{2i + 2} }} + {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\nolimits_{j \in C} {p_{{PS_{0} PS_{2n + 3j} }} p_{{PS_{2n + 3j} PS_{2n + 3j + 1} }} p_{{PS_{2n + 3j + 1} PS_{2} }} } {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + {\kern 1pt} {\kern 1pt}$$
$$\sum\nolimits_{i \in B} {p_{{PS_{0} PS_{2i + 1} }} } p_{{PS_{2i + 1} PS_{2} }} + \sum\nolimits_{i \in B} {p_{{PS_{0} PS_{2i + 1} }} p_{{PS_{2i + 1} PS_{2i + 2} }} } + \sum\nolimits_{j \in C} {p_{{PS_{0} PS_{2n + 3j} }} }$$
$$p_{{PS_{2n + 3j} PS_{2} }} + \sum\nolimits_{j \in C} {p_{{PS_{0} PS_{2n + 3j} }} p_{{PS_{2n + 3j} PS_{2n + 3j + 1} }} + {\kern 1pt} \sum\nolimits_{i \in B} {p_{{PS_{0} PS_{2i + 1} }} p_{{PS_{2i + 1} PS_{1} }} } }$$
$$+ \sum\nolimits_{j \in C} {p_{{PS_{0} PS_{2n + 3j} }} } p_{{PS_{2n + 3j} PS_{2n + 3j + 2} }} {.}$$

The general equations which can be used to calculate the mean sojourn time \(h_{{PS_{i} }}\) at system state \(PS_{i}\) are give by Eqs. (33)–(40).

$$h_{{PS_{2n + 3j + 1} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{fdp}}j}} {(}t{))(}1 - F_{{{\text{dp}}j}} {(}t{))(}1 - F_{{{\text{mp}}j}} {(}t{))}d} t$$
(33)
$$h_{{PS_{2n + 3j} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{dp}}j}} {(}t{))(}1 - F_{{{\text{p}}j}} {(}t{))(}1 - F_{{{\text{fp}}j}} {(}t{))}d} t$$
(34)
$$h_{{PS_{2i + 2} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{fds}}i}} {(}t{))(}1 - F_{{{\text{ds}}i}} {(}t{))(}1 - F_{{{\text{ms}}i}} {(}t{))}d} t$$
(35)
$$h_{{PS_{2i + 1} }} = \int_{0}^{\infty } {{(}1 - F_{{{\text{ds}}i}} {(}t{))(}1 - F_{{{\text{fs}}i}} {(}t{))(}1 - F_{{{\text{s}}i}} {(}t{))}d} t$$
(36)
$$h_{{PS_{0} }} = \int_{0}^{\infty } {\prod\nolimits_{i \in B} {{(}1 - F_{{{\text{as}}i}} {(}t{))}} \prod\nolimits_{j \in C} {{(}1 - F_{{{\text{ap}}j}} {(}t{))}} d} t$$
(37)
$$h_{{PS_{2n + 3j + 2} }} = \int_{0}^{\infty } {(1 - F_{{{\text{rp}}j}} {(}t{))}dt}$$
(38)
$$h_{{PS_{2} }} = \int_{0}^{\infty } {(1 - F_{{{\text{SR}}}} {(}t{))}dt}$$
(39)
$$h_{{PS_{1} }} = \int_{0}^{\infty } {(1 - F_{{\text{R}}} {(}t{))}dt}$$
(40)

Appendix B

In this section, we give the detailed process for calculating the MTTF of SFC service mentioned in Sect. 3.5 of the main paper. The notations used in this appendix are defined in Table 3 of the main paper.

The equations of calculating the expected number of visits \(V_{{PS_{i*} }}^{*}\) to system state \(PS_{i*}\) until absorption are given by Eqs. (41)–(46),

$$\begin{aligned} V_{{S_{2n + 3j} }}^{*} & = - {(}p_{{PS_{0} PS_{2n + 3j - 2} }} p_{{PS_{2n + 3j - 2} PS_{2n + 3j - 1} }} p_{{PS_{2n + 3j - 1} PS_{2n + 3j} }} \\ & {{ + p_{{PS_{0} PS_{2n + 3j - 2} }} p_{{PS_{2n + 3j - 2} PS_{2n + 3j} }} {)}} \mathord{\left/ {\vphantom {{ + p_{{PS_{0} PS_{2n + 3j - 2} }} p_{{PS_{2n + 3j - 2} PS_{2n + 3j} }} {)}} M}} \right. \kern-\nulldelimiterspace} M} \end{aligned}$$
(41)
$$V_{{S_{2n + 3j - 1} }}^{*} = - {{p_{{PS_{0} PS_{2n + 3j - 2} }} p_{{PS_{2n + 3j - 2} PS_{2n + 3j - 1} }} } \mathord{\left/ {\vphantom {{p_{{PS_{0} PS_{2n + 3j - 2} }} p_{{PS_{2n + 3j - 2} PS_{2n + 3j - 1} }} } M}} \right. \kern-\nulldelimiterspace} M}$$
(42)
$$V_{{S_{2i} }}^{*} = {{ - p_{{PS_{0} PS_{2i - 1} }} p_{{PS_{2i - 1} PS_{2i} }} } \mathord{\left/ {\vphantom {{ - p_{{PS_{0} PS_{2i - 1} }} p_{{PS_{2i - 1} PS_{2i} }} } M}} \right. \kern-\nulldelimiterspace} M}$$
(43)
$$V_{{S_{2n + 3j - 2} }}^{*} = {{ - p_{{PS_{0} PS_{2n + 3j - 2} }} } \mathord{\left/ {\vphantom {{ - p_{{PS_{0} PS_{2n + 3j - 2} }} } M}} \right. \kern-\nulldelimiterspace} M}$$
(44)
$$V_{{S_{2i - 1} }}^{*} = - {{p_{{PS_{0} PS_{2i - 1} }} } \mathord{\left/ {\vphantom {{p_{{PS_{0} PS_{2i - 1} }} } M}} \right. \kern-\nulldelimiterspace} M}$$
(45)
$$V_{{S_{0} }}^{*} = {{ - 1} \mathord{\left/ {\vphantom {{ - 1} M}} \right. \kern-\nulldelimiterspace} M}$$
(46)

where \(M = \sum\nolimits_{j \in C} {p_{{PS_{0} PS_{2n + 3j - 2} }} p_{{PS_{2n + 3j - 2} PS_{2n + 3j - 1} }} p_{{PS_{2n + 3j - 1} PS_{0} }} } - 1\)\(+ \sum\nolimits_{j \in C} {p_{{PS_{0} PS_{2n + 3j - 2} }} p_{{PS_{2n + 3j - 2} PS_{2n + 3j} }} p_{{PS_{2n + 3j} PS_{0} }} } { + }\sum\nolimits_{i \in B} {p_{{PS_{0} PS_{2i - 1} }} } p_{{PS_{2i - 1} PS_{2i} }}\)\(p_{{PS_{2i} PS_{0} }} + \sum\nolimits_{j \in C} {p_{{PS_{0} PS_{2n + 3j - 2} }} p_{{PS_{2n + 3j - 2} PS_{2n + 3j - 1} }} p_{{PS_{2n + 3j - 1} PS_{2n + 3j} }} } p_{{PS_{2n + 3j} PS_{0} }}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Chang, X., Machida, F. et al. Quantitative understanding serial-parallel hybrid sfc services: a dependability perspective. Peer-to-Peer Netw. Appl. 15, 1923–1938 (2022). https://doi.org/10.1007/s12083-022-01329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-022-01329-0

Keywords

Navigation