Skip to main content

Advertisement

Log in

Multi-attributes based energy efficient clustering for enhancing network lifetime in WSN’s

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

State-of-the-art technologies are upcoming due to innovation and its implications in various domains. Wireless sensor networks playing vital role and energy consumption is considered as an important issues in this domain. All the IoT based applications needs to be multi-objective and optimized for improved performance, we can’t deny the fact that WSN plays an important role in every technologies as sensors were involved for collecting and sensing environment. Many solutions were given regarding the power utilization. Clustering is one such important solutions for efficient energy utilization. The extensive evolution of clustering algorithms leads to increase network lifetime, efficient energy consumption but because of many conflicting attributes that affects the efficiency of clustering that needs to be optimized such as residual energy, BS connectivity, distance of BS-CH’s, etc. and it required proper co-ordination. Our work proposes Multi-Attribute Decision Making (MADM) based Cluster Heads (CH’s) selection for enhancing network lifetime and efficient energy consumptions. We have considered a total 20 attributes, and co-ordination among these attributes has been done by using MADM approaches which selects optimal CHs for increasing network lifetime of WSN. Our results validate that our proposed algorithms performs better than EECH, LEACH-C, and LEACH in rapports of energy efficiency and optimal load-balanced among the sensor nodes. Also enhancement in network lifetime due to efficient energy consumption in proposed work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Sharing of data is not applicable for this article as no datasets were generated or analysed during current study.

References

  1. Mishra S, Tripathi AR (2020) Platform business model on state-of-the-art business learning use case. International Journal of Financial Engineering 7(02):2050015

    Article  Google Scholar 

  2. Zhao F, Guibas LJ, Guibas L (2004) Wireless sensor networks: an information processing approach. Morgan Kaufmann

    Google Scholar 

  3. Mishra S, Tripathi AR (2020) Literature review on business prototypes for digital platform. J Innov Entrep 9(1):1–19

    Article  Google Scholar 

  4. Fadel E, Gungor VC, Nassef L, Akkari N, Malik MA, Almasri S, Akyildiz IF (2015) A survey on wireless sensor networks for smart grid. Comput Commun 71:22–33

    Article  Google Scholar 

  5. Chan L, Chavez KG, Rudolph H, Hourani A (2020) Hierarchical routing protocols for wireless sensor network: A compressive survey. Wireless Netw 26(5):3291–3314

    Article  Google Scholar 

  6. Shahraki A, Taherkordi A, Haugen Ø, Eliassen F (2020) A survey and future directions on clustering: from wsns to iot and modern networking paradigms. IEEE Trans Netw Serv Manag

  7. Sobin CC (2020) A survey on architecture, protocols and challenges in IoT. Wireless Pers Commun 112(3):1383–1429

    Article  Google Scholar 

  8. Mishra S, Tripathi AR (2020) IoT platform business model for innovative management systems. International Journal of Financial Engineering 7(03):2050030

    Article  Google Scholar 

  9. Mishra S, Tripathi AR, Singh RS, Mishra P (2022) Design and implementation of internet of everything’s business platform ecosystem. https://doi.org/10.21203/rs.3.rs-402461/v1

  10. Mishra S (2018) Financial management and forecasting using business intelligence and big data analytic tools. International Journal of Financial Engineering 5(02):1850011. https://doi.org/10.1142/S2424786318500111

    Article  MathSciNet  Google Scholar 

  11. Alsamhi SH, Ma O, Ansari MS, Almalki FA (2019) Survey on collaborative smart drones and internet of things for improving smartness of smart cities. Ieee Access 7:128125–128152

    Article  Google Scholar 

  12. Tang Y, Dananjayan S, Hou C, Guo Q, Luo S, He Y (2021) A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput Electron Agric 180:105895

    Article  Google Scholar 

  13. Mishra S, Tripathi AR (2021) AI business model: an integrative business approach. J Innov Entrep 10(1):1–21

    Article  Google Scholar 

  14. Mishra S, Tripathi AR (2020) Literature review on business prototypes for digital platform. J Innov Entrep 9(1):1–19

    Article  Google Scholar 

  15. Roslin SE (2021) Data validation and integrity verification for trust based data aggregation protocol in WSN. Microprocess Microsyst 80:103354

    Article  Google Scholar 

  16. Priyadarshi R, Gupta B, Anurag A (2020) Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. J Supercomput 1–41

  17. Jing Q, Vasilakos AV, Wan J, Lu J, Qiu D (2014) Security of the Internet of Things: perspectives and challenges. Wireless Netw 20(8):2481–2501

    Article  Google Scholar 

  18. Yan Z, Zhang P, Vasilakos AV (2014) A survey on trust management for internet of things. J Netw Comput Appl 42:120–134

    Article  Google Scholar 

  19. Vasilakos AV, Li Z, Simon G, You W (2015) Information centric network: Research challenges and opportunities. J Netw Comput Appl 52:1–10

    Article  Google Scholar 

  20. Sengupta S, Das S, Nasir M, Vasilakos AV, Pedrycz W (2012) An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transact Syst Man Cybern Part C (Appl Rev) 42(6):1093–1102

  21. Shivalingegowda C, Jayasree PVY (2021) Hybrid gravitational search algorithm based model for optimizing coverage and connectivity in wireless sensor networks. J Ambient Intell Humaniz Comput 12(2):2835–2848

    Article  Google Scholar 

  22. Meng T, Wu F, Yang Z, Chen G, Vasilakos AV (2015) Spatial reusability-aware routing in multi-hop wireless networks. IEEE Trans Comput 65(1):244–255

    Article  MathSciNet  MATH  Google Scholar 

  23. Busch C, Kannan R, Vasilakos AV (2011) Approximating congestion+ dilation in networks via" Quality of Routing” Games. IEEE Trans Comput 61(9):1270–1283

    Article  MathSciNet  MATH  Google Scholar 

  24. Zeng Y, Xiang K, Li D, Vasilakos AV (2013) Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Netw 19(2):161–173

    Article  Google Scholar 

  25. Zhang XM, Zhang Y, Yan F, Vasilakos AV (2014) Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Trans Mob Comput 14(4):742–754

    Article  Google Scholar 

  26. Yao Y, Cao Q, Vasilakos AV (2015) EDAL: Energy Efficient Delay Aware and Lifetime Balancing Data Collection Protocol for Heterogeneous WSNs. IEEE 810 IEEE. ACM Transact Netw 23(3)

  27. Xiao Y, Peng M, Gibson J, Xie GG, Du DZ, Vasilakos AV (2011) Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Trans Mob Comput 11(10):1538–1554

    Article  Google Scholar 

  28. Radhika M, Sivakumar P (2021) Energy optimized micro genetic algorithm based LEACH protocol for WSN. Wireless Netw 27(1):27–40

    Article  Google Scholar 

  29. Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wireless Commun 1(4):660–670

    Article  Google Scholar 

  30. Younis O, Fahmy S (2004) HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans Mob Comput 3(4):366–379

    Article  Google Scholar 

  31. Saranya V, Shankar S, Kanagachidambaresan GR (2018) Energy efficient clustering scheme (EECS) for wireless sensor network with mobile sink. Wireless Pers Commun 100(4):1553–1567

    Article  Google Scholar 

  32. Singh SK, Kumar P, Singh JP (2017) A survey on successors of LEACH protocol. Ieee Access 5:4298–4328

    Article  Google Scholar 

  33. Kuila P, Jana PK (2014) Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Eng Appl Artif Intell 33:127–140

    Article  Google Scholar 

  34. Mishra S, Mishra P (2022) Analysis of platform business and secure business intelligence. International Journal of Financial Engineering p. 2250002

  35. Fei Z, Li B, Yang S, Xing C, Chen H, Hanzo L (2016) A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems. IEEE Commun Surv Tutorials 19(1):550–586

    Article  Google Scholar 

  36. Yang JB, Sen P (1994) A general multi-level evaluation process for hybrid MADM with uncertainty. IEEE Trans Syst Man Cybern 24(10):1458–1473

    Article  Google Scholar 

  37. Hwang CL, Yoon K (1981) Multiple attribute decision making: a state of the art survey. Lecture Notes Econ Math Syst 186(1)

  38. Zavadskas EK, Turskis Z, Kildienė S (2014) State of art surveys of overviews on MCDM/MADM methods. Technol Econ Dev Econ 20(1):165–179

    Article  Google Scholar 

  39. Pan J, Teklu Y, Rahman S, de Castro A (2000) An interval-based MADM approach to the identification of candidate alternatives in strategic resource planning. IEEE Trans Power Syst 15(4):1441–1446

    Article  Google Scholar 

  40. Bejarano LA, Espitia HE, Montenegro CE (2022) Clustering analysis for the pareto optimal front in multi-objective optimization. Computation 10(3):37

    Article  Google Scholar 

  41. Mühlbauer M, Rang F, Palm H, Bohlen O, Danzer MA (2022) Pareto-optimal power flow control in heterogeneous battery energy storage systems. J Energy Storage 48:103803

    Article  Google Scholar 

  42. Scitovski R, Sabo K (2020) DBSCAN-like clustering method for various data densities. Pattern Anal Appl 23(2):541–554

    Article  MathSciNet  Google Scholar 

  43. Ahmad A, Dey L (2007) A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng 63(2):503–527

    Article  Google Scholar 

  44. Afsar MM, Tayarani-N MH (2014) Clustering in sensor networks: A literature survey. J Netw Comput Appl 46:198–226

    Article  Google Scholar 

  45. Jiang C, Yuan D, Zhao Y (2009) Towards clustering algorithms in wireless sensor networks-a survey. In 2009 IEEE Wireless Commun Netw Conf (pp 1–6). IEEE

  46. Abbasi AA, Younis M (2007) A survey on clustering algorithms for wireless sensor networks. Comput Commun 30(14–15):2826–2841

    Article  Google Scholar 

  47. Shafiq M, Ashraf H, Ullah A, Tahira S (2020) Systematic Literature Review on Energy Efficient Routing Schemes in WSN–A Survey. Mobile Netw Appl 1–14

  48. Yuan HY, Yang SQ, Yi YQ (2011) An energy-efficient unequal clustering method for wireless sensor networks. In 2011 Int Conf Comput Manage (CAMAN) (pp 1–4). IEEE

  49. Ye M, Li C, Chen G, Wu J (2005) EECS: an energy efficient clustering scheme in wireless sensor networks. In PCCC 2005 24th IEEE Int Perform Comput Commun Conf (pp 535–540). IEEE

  50. Lei J, Yates R, Greenstein L (2009) A generic model for optimizing single-hop transmission policy of replenishable sensors. IEEE Trans Wireless Commun 8(2):547–551

    Article  Google Scholar 

  51. Zhang YQ, Wei L (2010) Improving the LEACH protocol for wireless sensor networks. In IET Int Conf Wireless Sens Netw 2010 (IET-WSN 2010) (pp 355–359). IET

  52. Ran G, Zhang H, Gong S (2010) Improving on LEACH protocol of wireless sensor networks using fuzzy logic. J Inf Comput Sci 7(3):767–775

    Google Scholar 

  53. Tong M, Tang M (2010) LEACH-B: an improved LEACH protocol for wireless sensor network. In 2010 6th Int Conf Wireless Commun Netw Mobile Comput (WiCOM) (pp 1–4). IEEE

  54. Tyagi S, Kumar N (2013) A systematic review on clustering and routing techniques based upon LEACH protocol for wireless sensor networks. J Netw Comput Appl 36(2):623–645

    Article  Google Scholar 

  55. Ding P, Holliday J, Celik A (2005) Distributed energy-efficient hierarchical clustering for wireless sensor networks. In Int Conf Distrib Comput Sens Syst (pp 322–339). Springer, Berlin, Heidelberg

  56. Sim I, Choi K, Kwon K, Lee J (2009) Energy efficient cluster header selection algorithm in WSN. In 2009 Int Conf Complex Intell Softw Intensive Syst (pp 584–587). IEEE

  57. Kumar D, Aseri TC, Patel R (2009) EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Comput Commun 32(4):662–667

  58. Qureshi TN, Javaid N, Khan AH, Iqbal A, Akhtar E, Ishfaq M (2013) BEENISH: Balanced energy efficient network integrated super heterogeneous protocol for wireless sensor networks. Procedia Comput Sci 19:920–925

    Article  Google Scholar 

  59. Javaid N, Qureshi TN, Khan AH, Iqbal A, Akhtar E, Ishfaq M (2013) EDDEEC: Enhanced developed distributed energy-efficient clustering for heterogeneous wireless sensor networks. Procedia Comput Sci 19:914–919

    Article  Google Scholar 

  60. Yi S, Heo J, Cho Y, Hong J (2007) PEACH: Power-efficient and adaptive clustering hierarchy protocol for wireless sensor networks. Comput Commun 30(14–15):2842–2852

    Article  Google Scholar 

  61. Mirjalili S (2019) Genetic algorithm. In Evol Algorithms Neural Netw (pp 43–55). Springer, Cham

  62. Osamy W, El-Sawy AA, Salim A (2020) CSOCA: chicken swarm optimization based clustering algorithm for wireless sensor networks. IEEE Access 8:60676–60688

    Article  Google Scholar 

  63. Ferentinos KP, Tsiligiridis TA, Arvanitis KG (2005) Energy optimization of wireless sensor networks for environmental measurements. In Proc Int Conf Comput Intell Measure Syst Appl (CIMSA) 51:1031–1051

  64. Lee D, Lee W, Kim J (2007) Genetic algorithmic topology control for two-tiered wireless sensor networks. In Int Conf Comput Sci (pp 385–392). Springer, Berlin, Heidelberg

  65. Sahoo BM, Amgoth T, Pandey HM (2020) Particle swarm optimization based energy efficient clustering and sink mobility in heterogeneous wireless sensor network. Ad Hoc Netw 106:102237

    Article  Google Scholar 

  66. Famila S, Jawahar A (2020) Improved artificial bee Colony optimization-based clustering technique for WSNs. Wireless Pers Commun 110(4):2195–2212

    Article  Google Scholar 

  67. Abualigah L, Diabat A, Geem ZW (2020) A comprehensive survey of the harmony search algorithm in clustering applications. Appl Sci 10(11):3827

    Article  Google Scholar 

  68. Gupta GP, Saha B (2020) Load balanced clustering scheme using hybrid metaheuristic technique for mobile sink based wireless sensor networks. J Ambient Intell Humaniz Comput pp 1–12

  69. Kuo RJ, Zheng YR, Nguyen TPQ (2021) Metaheuristic-based possibilistic fuzzy k-modes algorithms for categorical data clustering. Inf Sci 557:1–15

    Article  MathSciNet  MATH  Google Scholar 

  70. Tzanetos A, Dounias G (2021) Nature inspired optimization algorithms or simply variations of metaheuristics. Artif Intell Rev 54(3):1841–1862

    Article  MATH  Google Scholar 

  71. Kuila P, Jana PK (2014) A novel differential evolution based clustering algorithm for wireless sensor networks. Appl Soft Comput 25:414–425

    Article  Google Scholar 

  72. Gupta G, Younis M (2003) Load-balanced clustering of wireless sensor networks. In IEEE Int Conf Commun ICC'03 3:1848–1852. IEEE

  73. Hassan BA, Rashid TA (2021) A multidisciplinary ensemble algorithm for clustering heterogeneous datasets. Neural Comput Appl 1–24

  74. Sahoo BM, Pandey HM, Amgoth T (2021) GAPSO-H: A hybrid approach towards optimizing the cluster based routing in wireless sensor network. Swarm Evol Comput 60:100772

    Article  Google Scholar 

  75. Mazinani A, Mazinani SM, Hasanabadi S (2021) FSCVG: A Fuzzy Semi-Distributed Clustering Using Virtual Grids in WSN. Wireless Personal Commun 1–22

  76. Sheriba ST, Rajesh DH (2021) Energy-efficient clustering protocol for WSN based on improved black widow optimization and fuzzy logic. Telecommun Syst 1–18

  77. Adnan M, Yang L, Ahmad T, Tao Y (2021) An Unequally Clustered Multi-hop Routing Protocol Based on Fuzzy Logic for Wireless Sensor Networks. IEEE Access 9:38531–38545

    Article  Google Scholar 

  78. Kiran WS, Smys S, Bindhu V (2020) Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks. Soft Comput 24(15):11805–11818

    Article  Google Scholar 

  79. Rajpoot P, Dwivedi P (2020) Optimized and load balanced clustering for wireless sensor networks to increase the lifetime of WSN using MADM approaches. Wireless Netw 26(1):215–251

    Article  Google Scholar 

  80. Rajpoot P, Dwivedi P (2019) Multiple parameter based energy balanced and optimized clustering for WSN to enhance the Lifetime using MADM Approaches. Wireless Pers Commun 106(2):829–877

    Article  Google Scholar 

  81. Saaty TL (1990) Decision making for leaders: the analytic hierarchy process for decisions in a complex world. RWS Publications

  82. Hwang CL, Lai YJ, Liu TY (1993) A new approach for multiple objective decision making. Comput Oper Res 20(8):889–899

    Article  MATH  Google Scholar 

  83. Akram M, Shahzadi G, Alcantud JCR (2022) Multi-attribute decision-making with q-rung picture fuzzy information. Granular Comput 7(1):197–215

    Article  Google Scholar 

  84. Munjal R, Liu W, Li X, Gutierrez J, Chong PHJ (2022) Multi-attribute decision making for energy-efficient public transport network selection in smart cities. Future Internet 14(2):42

    Article  Google Scholar 

  85. Khalily-Dermany M (2022) Multi-criteria itinerary planning for the mobile sink in heterogeneous wireless sensor networks. J Ambient Intell Humaniz Comput pp 1–20

  86. Jia L (2021) Distributed energy balance routing algorithm for wireless sensor network based on multi-attribute decision-making. Sustainable Energy Technol Assess 45:101192

    Article  Google Scholar 

  87. Kumari S, Mishra PK, Anand V (2020) Integrated load balancing and void healing routing with Cuckoo search optimization scheme for underwater wireless sensor networks. Wireless Pers Commun 111(3):1787–1803

    Article  Google Scholar 

  88. Jaiswal K, Anand V (2020) EOMR: An energy-efficient optimal multi-path routing protocol to improve QoS in wireless sensor network for IoT applications. Wireless Pers Commun 111(4):2493–2515

    Article  Google Scholar 

  89. Shukla A, Tripathi S (2020) A multi-tier based clustering framework for scalable and energy efficient WSN-assisted IoT network. Wireless Netw 26(5):3471–3493

    Article  Google Scholar 

  90. Sobhanayak S, Jaiswal K, Turuk AK, Sahoo B, Mohanta BK, Jena D (2020) Container-based task scheduling for edge computing in IoT-cloud environment using improved HBF optimisation algorithm. Int J Embedded Syst 13(1):85–100

    Article  Google Scholar 

  91. Jaiswal K, Anand V (2021) A QoS aware optimal node deployment in wireless sensor network using Grey wolf optimization approach for IoT applications. Telecommun Syst 78(4):559–576

    Article  Google Scholar 

  92. Shahbaz AN, Barati H, Barati A (2021) Multipath routing through the firefly algorithm and fuzzy logic in wireless sensor networks. Peer-to-Peer Netw Appl 14(2):541–558

    Article  Google Scholar 

  93. Mosavifard A, Barati H (2020) An energy-aware clustering and two-level routing method in wireless sensor networks. Computing 102(7):1653–1671

    Article  MathSciNet  Google Scholar 

  94. Yousefpoor E, Barati H, Barati A (2021) A hierarchical secure data aggregation method using the dragonfly algorithm in wireless sensor networks. Peer-to-Peer Netw Appl 14(4):1917–1942

    Article  Google Scholar 

  95. Hasheminejad E, Barati H (2021) A reliable tree-based data aggregation method in wireless sensor networks. Peer-to-Peer Netw Appl 14(2):873–887

    Article  Google Scholar 

  96. Naghibi M, Barati H (2021) SHSDA: secure hybrid structure data aggregation method in wireless sensor networks. J Ambient Intell Humaniz Comput 12(12):10769–10788

    Article  Google Scholar 

  97. Hajipour Z, Barati H (2021) EELRP: energy efficient layered routing protocol in wireless sensor networks. Computing 103(12):2789–2809

    Article  MathSciNet  Google Scholar 

  98. Sharifi SS, Barati H (2021) A method for routing and data aggregating in cluster-based wireless sensor networks. Int J Commun Syst 34(7):e4754

    Article  Google Scholar 

  99. Dezfuli NN, Barati H (2019) Distributed energy efficient algorithm for ensuring coverage of wireless sensor networks. IET Commun 13(5):578–584

    Article  Google Scholar 

  100. Nilsaz Dezfouli N, Barati H (2020) A distributed energy-efficient approach for hole repair in wireless sensor networks. Wireless Netw 26(3):1839–1855

    Article  Google Scholar 

  101. Yousefpoor MS, Yousefpoor E, Barati H, Barati A, Movaghar A, Hosseinzadeh M (2021) Secure data aggregation methods and countermeasures against various attacks in wireless sensor networks: A comprehensive review. J Netw Comput Appl 190:103118

    Article  Google Scholar 

  102. Xue J, Yip TL, Wu B, Wu C, van Gelder PHAJM (2021) A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China. Renew Energy 172:897–917

    Article  Google Scholar 

  103. Mokarrari KR, Torabi SA (2021) Ranking cities based on their smartness level using MADM methods. Sustain Cities Soc 103030

  104. Jain N, Tomar A, Jana PK (2021) A novel scheme for employee churn problem using multi-attribute decision making approach and machine learning. J Intell Inf Syst 56(2):279–302

    Article  Google Scholar 

  105. Singh S, Ganie AH (2021) Applications of picture fuzzy similarity measures in pattern recognition, clustering, and MADM. Expert Syst Appl 168:114264

    Article  Google Scholar 

  106. Lin M, Li X, Chen R, Fujita H, Lin J (2021) Picture fuzzy interactional partitioned Heronian mean aggregation operators: an application to MADM process. Artificial Intell Rev 1–38

  107. Munir M, Mahmood T, Hussain A (2021) Algorithm for T-spherical fuzzy MADM based on associated immediate probability interactive geometric aggregation operators. Artificial Intell Rev 1–29

  108. Vo TT, Xia A, Rogan F, Wall DM, Murphy JD (2017) Sustainability assessment of large-scale storage technologies for surplus electricity using group multi-criteria decision analysis. Clean Technol Environ Policy 19(3):689–703

    Article  Google Scholar 

  109. Antunes CH, Henriques CO (2016) Multi-objective optimization and multi-criteria analysis models and methods for problems in the energy sector. In Multiple Criteria Decision Anal (pp 1067–1165). Springer, New York, NY

  110. Murrant D, Radcliffe J (2018) Assessing energy storage technology options using a multi-criteria decision analysis-based framework. Appl Energy 231:788–802

    Article  Google Scholar 

  111. Greco S, Figueira J, Ehrgott M (2016) Multiple criteria decision analysis, vol 37. Springer, New York

    Book  MATH  Google Scholar 

  112. Crossbow (2010) M. I. C. A. (2). mote–datasheet. Available at http://www.xbow.com/products/Product_pdf_files/Wireless_pdf.MICA2_Datasheet.pdf

  113. Chipcon AS (2004) CC1000: Single chip very low power RF transceiver. 2004-04-20. http://www.chipcon.com/files/CC1000_Data_Sheet_2_2.pdf

  114. Instruments T (2003) Data sheet of MSP430x13x, MSP430x14x, MSP430x14x1 Mixed Signal Microcontr Oller. Texas Instruments Corp

  115. Yoon KP, Hwang CL (1995) Multiple attribute decision making: an introduction. Sage Publications

  116. Assari A, Mahesh T, Assari E (2012) Role of public participation in sustainability of historical city: usage of TOPSIS method. Indian J Sci Technol 5(3):2289–2294

    Article  Google Scholar 

  117. Yu D, Pan T (2021) Tracing knowledge diffusion of TOPSIS: A historical perspective from citation network. Expert Syst Appl 168:114238

    Article  Google Scholar 

  118. Chang DY (1996) Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res 95(3):649–655

    Article  MATH  Google Scholar 

  119. Al-Harbi KMAS (2001) Application of the AHP in project management. Int J Project Manage 19(1):19–27

    Article  Google Scholar 

  120. Brans JP (1982) The engineering of decision: Elaboration instruments of decision support method PROMETHEE. Laval University, Quebec, Canada

    Google Scholar 

  121. Brans JP, Vincke P (1985) Note—a preference ranking organisation method: (The PROMETHEE Method for multiple criteria decision-making). Manage Sci 31(6):647–656

    Article  MATH  Google Scholar 

  122. Molla MU, Giri BC, Biswas P (2021) Extended promethee method with pythagorean fuzzy sets for medical diagnosis problems. Soft Comput 25(6):4503–4512

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to give sincere thanks to the editor and the anonymous reviewers for their useful suggestion to improve the quality of this work.

The First author is thankful for UGC-BHU-NET fellowship. The Second Author is grateful for IoE grant of Banaras Hindu University.

Author information

Authors and Affiliations

Authors

Contributions

Ankita Srivastava has proposed and simulate the experiment and P.K Mishra review and modify the final manuscript.

Corresponding author

Correspondence to Ankita Srivastava.

Ethics declarations

Conflict of interest

There are no conflicts of interest associated with this publication. As Corresponding Author, I confirm that the manuscript has been read and approved for submission by all the named authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Mishra, P.K. Multi-attributes based energy efficient clustering for enhancing network lifetime in WSN’s. Peer-to-Peer Netw. Appl. 15, 2670–2693 (2022). https://doi.org/10.1007/s12083-022-01357-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-022-01357-w

Keywords

Navigation