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Abstract  

Lack of a fully vehicular topology view and restricted vehicles' movement to streets with the 

time-varying traffic light conditions have caused drastic gaps in the traditional vehicular 

routing protocols. A hierarchical traffic light-aware routing scheme called HIFS is proposed in 

this paper using fuzzy reinforcement learning and software-defined network (SDN) to fill these 

gaps. At the first level of our HIFS scheme, a utility-based intersections selection policy is 

presented using fuzzy logic that jointly considers delay estimation, curve distance, and 

predicted of moving vehicles towards intersections. Then, a fuzzy logic-based path selection 

policy is proposed to choose the paths with highest flexibility against the intermittent 

connectivity and increased traffic loads. Residual bandwidth, Euclidean distance, angular 

orientation, and congestion are considered inputs of the fuzzy logic system. Meanwhile, traffic 

light states and nodes' information are used to tune the output fuzzy membership functions via 

reinforcement learning algorithm. The efficiency of our scheme in controlling ambiguity and 

uncertainty of the vehicular environment is confirmed through simulations in various vehicle 

densities and different traffic lights duration. Simulation results show our HIFS scheme's 

superiority over the state-of-the-art methods in terms of delivery ratio, average delay, path 

length, and routing overhead. 

Keywords: Vehicular ad hoc networks, Software-defined networks, Intersection-base 

routing, Traffic lights, Fuzzy logic, Reinforcement learning 

1. Introduction 

Vehicular networks (VNs) have emerged as a promising technology in the future of Intelligent 

Transportation Systems (ITS), intending to improve road safety and develop vehicular 

entertainment applications [1-2]. Road safety applications, including traffic violation warnings, 

lane change alerts, and pre-crash warnings, aim to make driving easier and reduce casualties. 

Entertainment-related information would also provide passengers or drivers with 

entertainment, such as internet access, video streaming or gaming [1-5]. By providing a variety 

of communications, such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), or 

vehicle-to-everything (V2X), these applications can be shared with the surroundings [2], [6]. 

Sharing applications among vehicles via an efficient and reliable routing method has become 

an important research area in vehicular networks. In recent decades, numerous vehicular 

routing protocols and strategies [5-10] have been proposed in VNs that can be classified into 

location-based and topology-based routing categories based on the route formation strategy 

[5]. Lately, position-based routing protocols have attracted much attention among researchers 
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and communities due to their applicability in vehicular networks [5]. However, intermittent 

connectivity caused by high dynamics of the vehicular topology, bandwidth limitations, traffic 

congestion, and obstacles can lead to communication bottlenecks and compromise location-

based routing protocols' efficiency. That is why intersection-based routing protocols have been 

widely proposed to reduce the effects of the above-discussed challenges in vehicular networks 

[9]. Among the state-of-the-art intersection-based routing schemes, full path traffic-aware, 

local-based intersection selection, and broadcasting control packets (CP) are the most 

commonly employed methods for real-time road evaluations and choosing intersections [8-9]. 

However, limited knowledge of vehicular topology and additional costs such as increased 

latency and routing overhead may lead to sub-optimal traditional intersection-based routing 

performance. Some of the mentioned challenges are likely to be reduced by integrating new 

technological paradigms such as software-defined networking into vehicular intersection-based 

routing. SDN is a promising technology that offers an efficient network management solution 

by separating the control plane from the data plane [2], [6], [11-12]. Combined software-

defined networks into vehicular networks (SDVNs) can provide programmability and access 

to entire network information. Therefore, the routing decisions can be made based on the global 

information obtained from the vehicular environments and road network topology. 

1.1. Motivation 

Significant challenges of traditional vehicular routing, including local maxima and 

congestion caused by limited knowledge in routing decisions, can be reduced through global 

visibility provided by SDVNs. However, intermittent connectivity, interface heterogeneity, and 

increasing demand for scalability and reliability, besides road constraints such as time-varying 

traffic lights, are common barriers to optimal SDVNs routing performance. Therefore, making 

routing decisions in SDN-enabled vehicular networks due to road restrictions and application 

requirements such as end-to-end latency is still challenging. Various routing criteria to tackle 

these challenges have been presented in SDVNs using different techniques and computational 

methods [13-22]. Among these techniques, fuzzy logic schemes such as [16] can make routing 

decisions more efficient as a user-friendly method closer to human thinking by processing 

approximate data using non-numeric linguistic variables. However, the use of the traditional 

fuzzy type-1 due to the possibility of conflicting criteria, in addition to the uncertainty and 

ambiguity of the vehicular environment, may lead to sub-optimal routing decisions. 

Accordingly, a new paradigm should be developed to cope with vehicular environment 

uncertainties. Fuzzy logic with the ability of tuning fuzzy membership functions can deal with 

ambiguities resulting in more suitable performance [23-24]. Adaptivity of membership 

functions can handle linguistic and numerical uncertainties associated with traditional type-1 

fuzzy [24]. Motivated by dealing with the uncertainties of vehicular environments and 

considering the traffic light's effect, this paper presented a fuzzy-based hierarchical routing 

scheme with tuning output membership functions based on SARSA reinforcement learning.   

1.2. Main contributions 

 A hierarchical routing scheme is proposed in SDN-enabled vehicular networks to 

make decisions efficiently. Initially, a fuzzy logic-based intersections selection policy 

is provided by jointly considering estimated latency, predicted of moving vehicles 

towards candidate intersections, and curve distance. Based on the fuzzy results, we 
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proposed a utility-based scheme to dynamically select a sequence of intersections, 

which can improve the data packet transmission efficiency. 

 A utility-based relay node selection policy is proposed via fuzzy logic with flexibility 

against network topology changes and increased traffic loads. The HIFS scheme 

considers multiple fuzzy metrics, including residual bandwidth, angular orientation, 

Euclidean distance, and load capacity. 

 The output fuzzy membership functions are tuned by SARSA reinforcement learning 

to handle the impacts of uncertainties arising from the dynamic vehicular topology 

and road restricted to the different traffic lights conditions. The efficiency of 

adaptively tuning fuzzy membership functions depending on macroscopic and 

microscopic vehicular environment aspects has been proven through simulation. Our 

HIFS scheme has improved network performance in terms of packet delivery ratio, 

average delay, path length, and routing overhead than the state-of-the-art routing 

schemes. 

1.3. Organization 

The rest of this paper is organized as follows. A summary over the state-of-the-art 

intersection-based routing protocols is laid out in Section 2. Section 3 presents the details of 

our routing scheme. In Section 4, the simulation settings and the results are discussed. Finally, 

concluding remarks and our future work are given in Section 5. 

2. Related work 

In this section, some recent efforts are surveyed in the state-of-the-art intersection-based 

routing in two categories: 1) traditional intersection-based protocols in vehicular networks; 2) 

integration of software-defined networks into the intersection-based routing in vehicular 

networks. Details of the surveyed papers in each section are stated below. 

2.1. Traditional intersection-based routing in VNs 

Some of the intersection-based routing protocols using fuzzy logic or traffic light-aware are 

discussed below, along with their similarity to our scheme. In [25], Ding et al. to consider 

traffic light's effects on routing performance, have proposed a traffic light-aware routing 

scheme called TLRC. The next road section in this scheme was selected according to the 

density and vehicle distribution. A greedy strategy was used to choose the next-hop nodes in 

this scheme. Chang et al. [26] suggested a shortest path-based traffic light aware routing 

scheme called STAR. Data packet forwarding in the road sections is based on the traffic lights 

statutes (e.g., green lights have higher priority for forwarding data packets). The next-hop node 

between two intersections was chosen using the greedy method. In [27], Xia et al. presented a 

greedy traffic light and queue-aware routing method called GTLQR, which used street 

connectivity in various traffic light conditions to select the best intersection. Then it would 

consider the channel condition, distance to destination, and queueing delay in prioritizing 

neighbor nodes for selecting the next-hop nodes. Zhou et al. [28] proposed a multiple 

intersection selection routing called MISR, which modeled the intersection selection as an 

optimization problem. It selected the intersection with minimum delay and highest connectivity 

by considering traffic light conditions. In addition, the instability coefficient by combining the 

neighbor's progress towards the destination and the speed difference between neighbors were 

used to select the next-hop nodes. Cao et al. [29] suggested a fuzzy logic intersection-based 
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routing scheme called IRFMFD, in which intersections would be selected based on the number 

of vehicles and link lifetime obtained from two-hop neighbors' information. The next-hop node 

selection in the IFRMFD scheme is a fuzzy-based method considering vehicle density, 

distance, and relative speed of vehicles. Also, Cao et al. [30] presented an intersection-based 

routing scheme with a fuzzy multi-factor called IRFMF. Density, number of lanes, and traffic 

flow were considered inputs of the fuzzy system in selecting the intersections. This method 

used the limited greedy strategy by considering the number of contacts between vehicles for 

the next-hop selection. He et al. [31] proposed an intersection-based traffic-aware routing via 

fuzzy Q-learning called ITAR-FQ. ITAR-FQ scheme used a weighted cost function composed 

of density, road latency, and Manhattan distance in its intersection selection mechanism. Also, 

link lifetime, link quality, Euclidean distance, and bandwidth via a fuzzy logic system were 

utilized to choose the next-hop nodes. Debnath et al. [32] proposed a fuzzy logic scheme for 

inter-vehicle network routing. Intersections selection in this method depends on the number of 

vehicles, the distance between two intersections, and the average speed of vehicles moving 

between two intersections. The communication link expiration time and communication 

quality factor simultaneously selected the next-hop nodes based on the fuzzy logic. 

2.2. Intersection-based routing with the aid of SDNs 

 In recent years, numerous intersection-based multi-path or single-path routing schemes have 

been proposed in the software-defined vehicular networks via various techniques such as 

computational intelligence, and position estimation methods [2,13-20]. Some of them are being 

studied in the following. Zhao et al. [13] proposed Penicillium reproduction-based Online 

Learning Adaptive Routing method called POLAR. A proper routing method (i.e., ADOV and 

DSR) would be selected in this scheme based on the information obtained from the current 

traffic conditions. The geographical area was divided into multiple grids to facilitate real-time 

information processing. Furthermore, Penicillium Reproduction Algorithm (PRA) algorithm 

with optimization abilities would enhance the learning process's efficiency. Oubbati et al. [14] 

proposed a three-tier architecture called SEARCH to develop the awareness of road conditions 

and select the best-traveled path for vehicles. Dijkstra's algorithm was used to assess shorter 

time routes to get to any specific destination based on the journey times. The journey time was 

computed according to the density of vehicles, obstacles, casualties on the roads, and the 

average velocity of vehicles. Noorani and Seno [15] proposed SDN and Fog computing-based 

Switchable Routing called SFSR to select the most suitable path for data routing. A weighted 

cost function by combining Euclidean distance, route length, route delay, traffic congestion, 

and stability parameters is used to select the best routing paths. Zhao et al. [16] proposed an 

SDN-based fuzzy logic routing scheme that divided urban regions into several areas. A fuzzy-

based method with several features, including mixed distribution, one-way connectivity, and 

valid distance, was employed for selecting the most suitable areas. In addition, a reinforcement 

learning algorithm was used to adapt the area selection policy. The most stable paths were also 

selected through fuzzy logic considering movement direction, speed, and distance. Abbas et al. 

[17] developed a hybrid routing strategy for SDVNs that divides road segments into different 

sections. High-reliability paths were selected considering the number of neighbors, link 

connections, and node distributions. The controller also would utilize a mechanism to deal with 

link failures. Hello messages interval was adjusted depending on the vehicle velocity. 

Venkatramana et al. [18] proposed an SDN-enabled connectivity-aware geographical routing 

called SCGRP, in which the shortest vehicular route would be computed using OSM spatial 



5 

 

data. A traffic value threshold on the roads in this method was used to provide high path 

connectivity. The route between the source and destination nodes was computed using the 

distance, vehicle density, and vehicle speed. Kong and Zhang [19] proposed an ant colony 

routing algorithm for SDVNs, in which a pair of exploring ants would find the best routing 

paths for data transmission using pheromones. The intersection was computed considering the 

density and distance between the source and destination, and then next-hop nodes were selected 

greedily. Gao et al. [20] proposed a hierarchical load balancing scheme called HRLB for 

software-defined vehicular networks. In this method, the geographical area was divided into 

multiple small grids based on the geographical location. A sequence of grids was selected based 

on the probability of transition and real-time density of these grids for transmission of data 

packets. Two paths with the least cost would be selected considering the load balancing and 

node utility among the grids. The weighted cost function was obtained as a combined function 

of route length, the number of vehicles, distance from adjacent nodes, and route load. The 

utility of nodes was calculated based on the remaining buffer size and distance of nodes to the 

destination. 

2.3. Research gap 

 Transmission of CP packets at intersections such as ITAR-FQ [31] requires updating 

periodically, which increases latency and overhead, especially at high densities or high 

traffic loads. 

 Routing decision-making based on the local knowledge or two-hop neighbor's 

information due to the restricted view of vehicular topology leads to nodes trapped into 

the local maxima problem resulting in degradation of data routing efficiency [25-32]. 

 Regardless of road constraints and traffic light conditions, routing efficiency would be 

restricted. The traditional routing methods, including TLRC [25], STAR [26], GTLQR 

[27], and MISR [28], considered the effect of traffic lights during the local selection of 

intersections. However, traffic light effects in SDN-enabled vehicular networks should 

be considered while selecting a sequence of intersections in the data routing process. 

 Despite all advances gained by using the traditional fuzzy type-1 and other 

computational intelligence techniques in SDVNs routing schemes [13-20], coping with 

uncertainties and ambiguity of the vehicular environments is still a challenging task that 

needs to be addressed. 

3. Proposed method 

This paper proposes a fuzzy-based routing scheme in the software-defined vehicular network 

to address the shortfalls outlined in Section 2.3 so that the ambiguity and uncertainty of the 

vehicular environment by tuning membership functions can be handled. Details of our scheme 

are given below. 

3.1. Network model 

Our hierarchical proposed SDVN architecture includes a set of vehicles, wireless switches, 

roadside units (RSUs), base stations (BSs), and centralized SDN controller. The centralized 

SDN controller is at the top level of the network. At the bottom level, RSUs and BSs are 

deployed for providing fog services supported by OpenFlow protocol, processing, and storage 
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capabilities. The network road can be depicted as graph 𝒢ℐ〈𝒱ℐ, ℰℐ , 𝒰ℐ〉, where 𝒱ℐ is a set of all 

intersections, and ℰℐ is a set of connected road segments to intersections. If there is at least one 

road segment between the two intersections, they are said to be adjacent. Vehicular topology 

also can form a dynamic graph as 𝒢𝓋〈𝒱𝓋, ℰ𝓋 , 𝒰𝓋〉. 𝒱𝓋 represents a finite set of nodes, and ℰ𝓋 

denotes a set of asymmetric wireless links between neighboring vehicles. 𝒰ℐ and 𝒰𝓋 are the 

utility of intersections and vehicle links, respectively, and are explained in Section 3.4. Using 

Global Positioning Systems (GPS), each node can inform of its positional information. The 

centralized SDN controller stores information, including congestion, residual bandwidth, 

location, distance, velocity, direction, etc., obtained from the local controllers. This 

information is gathered periodically from each vehicle using the southbound SDN interface. 

When a node is in the range of two local controllers, the controller with the shortest Hello's 

response time is taken as the nearest controller. The response time relies on the vehicle density 

and the length between the RSUs and vehicles. Our offered layered architecture is shown in 

Figure 1. 

 

Figure 1. Proposed layered architecture 

3.2. Neighbors discovery  

Vehicles and roadside units can get their own one-hop neighbor's information by exchanging 

Hello packets periodically. The interval of broadcasting Hello messages can be adaptive [33] 

or fixed. This paper uses a fixed Hello interval (𝜏 = 1). Table 1 shows the format of Hello 

packet. By broadcasting Hello packets from vehicular nodes, RSUs can listen to these messages 

if they are within the vehicle's range and transmit the obtained information to the SDN 

controller. Hence, the centralized SDN controller views the entire vehicular network topology. 

Conversely, each RSU broadcasts ACK messages to notify vehicles of its presence by receiving 

Hello messages from the vehicles. If no information has been received within the pre-defined 

time, the local controllers notify the centralized SDN controller. Then both local and 

centralized SDN controllers update their information. In some cases, vehicular nodes can leave 

the current RSU's coverage area and join the coverage area of another controller. At this point, 

the previous controller (RSU) forwards a notification to the centralized SDN controller, waiting 
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for the flow table to be updated. The SDN controller fixes and updates the data routing path 

based on the new network topology and then sends back the flow table to the roadside units. 

Table 1. Format of Hello packets  

Description Field 𝐕𝐞𝐡𝐢𝐜𝐥𝐞′𝐬 𝐈𝐃 𝐼𝐷 𝐒𝐞𝐧𝐝𝐢𝐧𝐠 𝐭𝐢𝐦𝐞 𝐨𝐟 𝐇𝐞𝐥𝐥𝐨 𝐩𝐚𝐜𝐤𝐞𝐭 𝑡𝑠 𝐃𝐢𝐫𝐞𝐜𝐭𝐢𝐨𝐧 (𝑑𝑥𝑣 , 𝑑𝑦𝑣) 𝐆𝐞𝐨𝐠𝐫𝐚𝐩𝐡𝐢𝐜𝐚𝐥 𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧  (𝑥𝑣 , 𝑦𝑣) 𝐕𝐞𝐥𝐨𝐜𝐢𝐭𝐲  𝑠𝑣  𝐂𝐨𝐧𝐬𝐮𝐦𝐞𝐝 𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝐡  𝐶𝐵 𝐑𝐞𝐦𝐚𝐢𝐧 𝐂𝐚𝐩𝐚𝐜𝐢𝐭𝐲 𝐨𝐟 𝐁𝐮𝐟𝐟𝐞𝐫 𝑅𝑐 𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝐡  𝑅𝑊𝐵 

 

3.3. Proposed hierarchical SDN-enabled vehicular routing: HIFS 

As shown in Figure 2, our HIFS scheme consists of intersection and forwarding vehicle 

selection strategies via fuzzy reinforcement learning algorithm. The details of these strategies 

and their steps are described below. 

 

      Figure 2. Proposed fuzzy SARSA learning strategy 

3.3.1. Intersection selection strategy  

Multi factors such as curve distance between intersections, predicting the number of vehicles 

moving towards intersections, and estimation latency between two intersections, via a fuzzy-

based method, are used in the centralized SDN controller or local controllers to compute the 

candidate intersection's utility. Our utility-based intersection selection policy is described 

below. 

3.3.1.1. Intersection selection criteria 

1) Curve-Distance: The normalized curve distance to specify the most suitable candidate 

intersection in terms of closeness to the destination vehicle is calculated by Eq. (1). 

(1) 𝐷𝑖𝑠𝑡𝑛𝑜𝑟𝑚(ℐ𝓂, ℐ𝒹) = 𝐷𝑖𝑠𝑡𝑐𝑢𝑟𝑣𝑒(ℐ𝓂, ℐ𝒹)𝐷𝑖𝑠𝑡𝑐𝑢𝑟𝑣𝑒(ℐ𝓃, ℐ𝒹)  
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where 𝐷𝑖𝑠𝑡𝑐𝑢𝑟𝑣𝑒(ℐ𝓃, ℐ𝒹) and 𝐷𝑖𝑠𝑡𝑐𝑢𝑟𝑣𝑒(ℐ𝓂, ℐ𝒹) are the curve distance of the current intersection ℐ𝓃 and candidate intersection ℐ𝓂 to destination intersection ℐ𝒹, respectively. Also, Eq. (2) [34] 

shows the curve distance between the two intersections. 

(2) 𝐷𝑖𝑠𝑡𝑐𝑢𝑟𝑣𝑒(ℐ𝓀, ℐℓ) = |𝑥𝓀 − 𝑥ℓ| + |𝑦𝓀 − 𝑦ℓ| 
The distance of the candidate destination intersection from the destination node and vehicle 

movement angle, as a weight function, is used to determine the destination intersection as Eq. 

(3) [35]. 

(3) 𝑤(ℐℓ) = 𝜔 × (1 − 𝐷𝑖𝑠𝑡(ℐℓ,𝑣𝑑)𝑐 ) + (1 − 𝜔) × cos(𝑑𝑉⃗⃗⃗⃗  ⃗(𝑣𝑑), 𝑝𝑉⃗⃗⃗⃗  ⃗(ℐℓ,𝑣𝑑)) 

where 

(4) 𝑐𝑜𝑠(𝑑𝑉⃗⃗⃗⃗  ⃗(𝑣𝑑), 𝑝𝑉⃗⃗⃗⃗  ⃗(ℐℓ,𝑣𝑑)) = 𝑎𝑑𝑉 × 𝑎𝑝𝑉 + 𝑏𝑑𝑉 × 𝑏𝑝𝑉√𝑎𝑑𝑉2 + 𝑏𝑑𝑉2 × √𝑎𝑝𝑉2 + 𝑏𝑝𝑉2  

where 𝐷𝑖𝑠𝑡(ℐℓ,𝑣𝑑) is the distance between candidate destination intersection ℐℓ and destination 𝑣𝑑. 𝑐 shows a normalization factor. 𝑑𝑉⃗⃗⃗⃗  ⃗(𝑣𝑑) as (𝑎𝑑𝑉 , 𝑏𝑑𝑉) = (𝑣𝑥𝑡, 𝑣𝑦𝑡) denotes the displacement 

vector of vehicle 𝑣𝑑 at time period ∆𝑡. Also, 𝑝𝑉⃗⃗⃗⃗  ⃗(ℐℓ,𝑣𝑑) as (𝑎𝑝𝑉 , 𝑏𝑝𝑉) = (𝑥ℐℓ − 𝑥𝑣𝑑 , 𝑦ℐℓ − 𝑦𝑣𝑑) 

indicates the position vector forming at 𝑣𝑑 and finishing at ℐℓ. 𝜔 is a weighted factor in the 

range of (0,1). The highest weight of 𝑤(ℐℓ) refers to the selected destination intersection. 

2) Predicting movement of vehicles towards intersections: Vehicles distributed sparsely at 

intersections or road segments have lower probability of finding a suitable relay node for 

sending the data packets. Based on the estimated movement of vehicles, this paper employed 

an evaluation index to predict the number of nodes entering or approaching the candidate 

intersections. Accordingly, moving vehicles towards or getting away from candidate 

intersections is computed as Eq. (5) [36]. 

(5) 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝑀) = √(𝑥𝑐𝑢𝑟 − 𝑥𝑚)2 + (𝑦𝑐𝑢𝑟 − 𝑦𝑚)2√(𝑥𝑓𝑢𝑡𝑢𝑟𝑒 − 𝑥𝑚)2 + (𝑦𝑓𝑢𝑡𝑢𝑟𝑒 − 𝑦𝑚)2 

where (𝑥𝑚, 𝑦𝑚) is the position of candidate intersection ℐ𝓂, and (𝑥𝑐𝑢𝑟, 𝑦𝑐𝑢𝑟) shows the current 

position of vehicle 𝑣𝑖. By assuming the current speed of the vehicle as 𝑠𝑐𝑢𝑟, the predicted 

position (𝑥𝑓𝑢𝑡𝑢𝑟𝑒 , 𝑦𝑓𝑢𝑡𝑢𝑟𝑒) of vehicle 𝑣𝑖 is computed by Eq. (6) [36]. 

 

(6) 

𝑥𝑓𝑢𝑡𝑢𝑟𝑒 = 𝑥 𝑐𝑢𝑟 + 𝑠𝑐𝑢𝑟 . 𝑡 sin 𝜉 𝑦𝑓𝑢𝑡𝑢𝑟𝑒 = 𝑦𝑐𝑢𝑟 + 𝑠𝑐𝑢𝑟 . 𝑡 cos 𝜉 

where, by considering the previous position of vehicle 𝑣𝑖 as (𝑥𝑝𝑟𝑒𝑣 , 𝑦𝑝𝑟𝑒𝑣), the angular 

orientation 𝜉 can be calculated by Eq. (7). 

(7) 𝜉 = tan−1 (𝑦𝑐𝑢𝑟 − 𝑦𝑝𝑟𝑒𝑣𝑥𝑐𝑢𝑟 − 𝑥𝑝𝑟𝑒𝑣) 

The centralized SDN controller or local controllers have set a predefined threshold value 𝜀 to 

calculate the number of vehicles approaching candidate intersections on the road segments. If 
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𝑀 is higher than 𝜀 with a value of 0.65, the vehicle moves towards the intersection; otherwise, 

it moves away from it. The number of vehicles approaching the candidate intersection can be 

predicted as: 

(8) 𝑀𝑇𝐼𝑛𝑜𝑟𝑚(ℐ𝓂) = 𝑁ℯ(ℐ𝓂)∑ 𝑁𝑡(ℐ𝓂)𝓆𝓉=1  

where ∑ 𝑁𝑡(ℐ𝓂)𝓆𝓉=1  indicates the total number of vehicles at all road segments 𝓆 leading to 

intersection ℐ𝓂. Also, 𝑁ℯ(ℐ𝓂) shows the number of vehicles entering/approaching intersection ℐ𝓂 at road segment ℯ. Based on Eq. (8), the road segment with a higher value of 𝑀𝑇𝐼𝑛𝑜𝑟𝑚 has 

a higher chance of forwarding data packets successfully. An exponentially weighted moving 

average (EWMA) is used by Eq. (9) to ensure that 𝑀𝑇𝐼𝑛𝑜𝑟𝑚 is not affected by the sudden 

changes. The coefficient 𝛼 is set to 0.75 based on the simulation results. 

(9) 𝑀𝑇𝐼𝑛𝑜𝑟𝑚(𝑡)(ℐ𝓂) ← (1 − 𝛼) × 𝑀𝑇𝐼𝑛𝑜𝑟𝑚(𝑡−1)(ℐ𝓂) + 𝛼 × 𝑀𝑇𝐼𝑛𝑜𝑟𝑚(𝑡)(ℐ𝓂) 

3) Delay estimation: The estimated delay between the two intersections can be computed 

based on the vehicle link's connectivity. The carry-and-forward mechanism is used if there is 

no link in the vicinity of the packet carrying vehicle. In this case, delay of data packets depends 

on the velocity of the carrying vehicle and the length of the traveled road segment by that 

vehicle. Also, if the road segment is connected, the delay induced to data packets relies on the 

hop counts passed at the road segment. Therefore, the estimated delay between the two 

intersections ℐ𝓃, and ℐ𝓂, can be computed as: 

(10) 𝐷𝑒𝑡𝑒(ℐ𝓃, ℐ𝓂) = 𝐷ℎ𝑜𝑝(ℐ𝓃, ℐ𝓂) + 𝐷𝑐𝑓(ℐ𝓃, ℐ𝓂) 
where 𝐷𝑐𝑓(ℐ𝓃, ℐ𝓂) is obtained as 

𝑠𝑣 𝑙𝓇𝓂𝓃𝑚⁄ . 𝑠𝑣 is the velocity of vehicle 𝑣𝑖, and 𝑙ℐ𝓃,ℐ𝓂𝑚  indicates 

the length of the road segment between the two intersections in which data packets must be 

carried by vehicle. Also, 𝐷ℎ𝑜𝑝(ℐ𝓃, ℐ𝓂) is the summation of the buffer delay 𝑑(𝑣𝑖,𝑣𝑗)𝑞
, transmission 

delay 𝑑(𝑣𝑖,𝑣𝑗)𝑡 , and the propagation delay 𝑑(𝑣𝑖,𝑣𝑗)𝑝
 of vehicles forming the data transmission path (𝑣𝑖 , 𝑣𝑗) ∈ 𝒱𝑣 between the two intersections ℐ𝓃, ℐ𝓂 ∈ 𝒱ℐ and obtained as Eq. (11) [37]. 

 

(11) 

 

𝐷ℎ𝑜𝑝(ℐ𝓃, ℐ𝓂) = ∑ 𝐷(𝑣𝑖 , 𝑣𝑗)(𝑣𝑖,𝑣𝑗)∈{ℐ𝓂 ,𝒱𝑣,ℐ𝓃} = ∑ (𝑑(𝑣𝑖,𝑣𝑗)𝑞 + 𝑑(𝑣𝑖,𝑣𝑗)𝑡 + 𝑑(𝑣𝑖,𝑣𝑗)𝑝 )(𝑣𝑖,𝑣𝑗)∈{ℐ𝓂 ,𝒱𝑣,ℐ𝓃}  

where 𝑑(𝑣𝑖,𝑣𝑗)𝑡 = 𝑙𝜑, and 𝑑(𝑣𝑖,𝑣𝑗)𝑝 = 𝑑(𝑣𝑖,𝑣𝑗)𝛾 . 𝑙 shows the packet size per bit, 𝜑 is the bandwidth in 

bits per second, 𝑑(𝑣𝑖,𝑣𝑗) denotes the Euclidean distance between 𝑣𝑖 and 𝑣𝑗 , and 𝛾 is the 

propagation speed in meters per second. Also, 𝑑(𝑣𝑖,𝑣𝑗)𝑞
 is computed by considering the buffer of 

nodes as M/M/1 model with a Poisson distribution of input 𝜆 and exponential variable of 

output 𝜇 as Eq. (12). 

(12) 𝑑(𝑣𝑖,𝑣𝑗)𝑞 = 1𝜇 − 𝜆 

Therefore, based on the collected information from the vehicles, the centralized SDN controller 

can compute the latency 𝐷𝑒𝑡𝑒(ℐ𝓃, ℐ𝓂) for each road segment 𝓇𝓂𝓃. In the computation of the 

delay, an exponentially weighted average method with coefficient 𝛼 = 0.75 is used as: 
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(13) 𝐷𝑒𝑡𝑒(𝑡)(ℐ𝓃, ℐ𝓂) ← (1 − 𝛼) × 𝐷𝑒𝑡𝑒(𝑡−1)(ℐ𝓃, ℐ𝓂) + 𝛼 × 𝐷𝑒𝑡𝑒(𝑡)(ℐ𝓃, ℐ𝓂) 

Finally, 𝐷𝑒𝑡𝑒(ℐ𝓃, ℐ𝓂) using Eq. (14) is normalized to (0,1). 

(14) 0 ≤ 𝐷𝑛𝑜𝑟𝑚(ℐ𝓃, ℐ𝓂) = 𝐷𝑒𝑡𝑒(ℐ𝓃, ℐ𝓂)𝑚𝑎𝑥 {𝐷𝑒𝑡𝑒(ℐ𝓃, ℐ𝓀), . . , 𝐷𝑒𝑡𝑒(ℐ𝓃, ℐ𝓂)} ≤ 1 

3.3.1.2. Fuzzy system design for intersection selection strategy 

Fuzzification, fuzzy inference, and defuzzification are the main parts of a fuzzy inference 

system (FIS) [38]. In the fuzzification process, a set of inputs crisp values are converted to the 

corresponding fuzzy set. This process depends on the membership functions defined separately 

for each input. Fuzzy membership functions describe the degrees of a crisp value belonging to 

linguistic variables. The most commonly used membership functions are Gaussian, triangular, 

and trapezoidal. In this paper, triangular and trapezoidal membership functions are used. 

Obtaining the final fuzzy values, mapping these values to predefined IF/THEN rules, and 

combining rules are the main responsibilities of fuzzy inference. Finally, defuzzification 

converts the final fuzzy value to a crisp one. In our fuzzification process, crisp values of the 

curve distance of candidate intersections to destination intersection, moving vehicles towards 

intersections, and the estimated delay between two intersections are converted to the linguistic 

variables {𝑁𝑒𝑎𝑟, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒, 𝐹𝑎𝑟}, {𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ}, and {𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ}, respectively, 

as illustrated in Figure 3.  

  
       (a) curve-distance             (b) moving towards intersection 

 
        (c) estimated delay 

Figure 3. Input membership functions for intersection selection strategy 

The ranking of the intersections according to the fuzzy rule base (i.e., IF/THEN rules) is 

shown in Table 2. In a rule, the IF part is called antecedent, and THEN part is called the 

consequent. Each rule combines input variables and obtains fuzzy decision output based on the 

linguistic variables as {𝑉𝑒𝑟𝑦 𝐿𝑜𝑤 (𝑉𝐿), 𝐿𝑜𝑤(𝐿),𝑀𝑒𝑑𝑖𝑢𝑚(𝑀), 𝐻𝑖𝑔ℎ(𝐻), 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ(𝑉𝐻)}. For 

example, if the curve distance is far, the latency is high, and the number of vehicles moving 

towards the intersection is low, the candidate intersection has a much lower chance of being 

selected in the data routing path. Finally, the fuzzy output is converted to a numerical value 

using the output membership function depicted in Figure 4 and the Last of Maxima (LOM) 

defuzzification method. The crisp value in the LOM method is the largest element of the fuzzy 
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value. Here LOM shows the utility of candidate intersections to be selected. A higher value of 

LOM would indicate a better intersection. 

Table 2. Rule base for ranking candidate intersections 

THEN  IF   

Rule 

THEN  IF   

Rule Rank 𝑴𝑻𝑰𝒏𝒐𝒓𝒎 𝑫𝒏𝒐𝒓𝒎 𝑫𝒊𝒔𝒕𝒏𝒐𝒓𝒎 Rank 𝑴𝑻𝑰𝒏𝒐𝒓𝒎 𝑫𝒏𝒐𝒓𝒎 𝑫𝒊𝒔𝒕𝒏𝒐𝒓𝒎 Medium High Medium Average 15. Medium Low Low Near 1. Low Low High Average 16. High Medium Low Near 2. Low Medium High Average 17. Very High High Low Near 3. Low High High Average 18. Medium Low Medium Near 4. Low Low Low Far 19. Medium Medium Medium Near 5. Low Medium Low Far 20. High High Medium Near 6. Medium High Low Far 21. Low Low High Near 7. Low Low Medium Far 22. Low Medium High Near 8. Low Medium Medium Far 23. Medium High High Near 9. Medium High Medium Far 24. Low Low Low Average 10. Very Low Low High Far 25. Medium Medium Low Average 11. Low Medium High Far 26. High High Low Average 12. Low High High Far 27. Low Low Medium Average 13. 

     Medium Medium Medium Average 14. 

 

 
Figure 4. Output membership function for ranking candidate intersections 

3.3.2. Forwarding node selection strategy  

This section describes selecting the relay nodes that make up the data transmission path from 

source to destination. The considered criteria and fuzzy system processing are described below. 

3.3.2.1. Forwarding vehicle selection criteria 

1) Load capacity: In this paper, to mitigate the effect of nodes buffer overflow in the formed 

data routing path, the size of the remaining buffer is used as a criterion for the next-hop node 

selection. The residual buffer size of a node similar to [39] is computed by Eq. (15).    𝐿𝑐(𝑣𝑖) = 𝑅𝑐(𝑣𝑖)𝑇𝑐(𝑣𝑖)  
(15) 

where 𝑅𝑐 and 𝑇𝑐 indicate the current buffer size, and the maximum buffer size of node 𝑣𝑖 at 

time 𝑡, respectively. The EWMA method with coefficient 𝛼 = 0.75 as Eq. (16) is employed in 

load capacity calculation. 

(16) 𝐿𝑐(𝑡)(𝑣𝑖) ← (1 − 𝛼) × 𝐿𝑐(𝑡−1)(𝑣𝑖) + 𝛼 × 𝐿𝑐(𝑡)(𝑣𝑖) 
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2) Angular orientation: In our strategy to select the next-hop node, the angular orientation is 

computed using Eq. (17) [36]. 

(17) 𝜃(𝑣𝑖 , 𝑣𝑗) = tan−1 (𝑦𝑚 − 𝑦𝑖𝑥𝑚 − 𝑥𝑖) − tan−1 (𝑦𝑗 − 𝑦𝑖𝑥𝑗 − 𝑥𝑖) 

where (𝑥𝓂, 𝑦𝓂) is the location of intersection ℐ𝓂, (𝑥𝑖, 𝑦𝑖) denotes the position of forwarding 

vehicle 𝑣𝑖, and (𝑥𝑗 , 𝑦𝑗) shows the position of neighboring node 𝑣𝑗. Assigning higher priority to 

a neighbor with a minimum angle caused higher link stability between vehicles. By Eq. (18), 

the angular orientation is normalized in the range of (0,1).  
(18) 0 ≤ 𝜃𝑣𝑖,𝑣𝑗𝑛𝑜𝑟𝑚 = 𝜃(𝑣𝑖 , 𝑣𝑗)𝑚𝑎𝑥 {𝜃(𝑣𝑖 , 𝑣𝑗), … , 𝜃(𝑣𝑖, 𝑣𝑛)} ≤ 1 

where 𝜃(𝑣𝑖, 𝑣𝑗) shows the angular orientation between vehicle 𝑣𝑖 and neighbor 𝑣𝑗 , and 𝑚𝑎𝑥 {𝜃(𝑣𝑖, 𝑣𝑗), … ,𝜃(𝑣𝑖, 𝑣𝑛)} is the maximum angles in the one-hop neighbors of vehicle 𝑣𝑖. 
3) Euclidean distance: Normalized Euclidean distance for selecting the next-hop node is 

considered in this paper as Eq. (19). 

 
(19) 0 ≤ 𝐷𝑖𝑠𝑡𝑛𝑜𝑟𝑚(𝑣𝑖, 𝑣𝑗) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2𝑅 ≤ 1 

where(𝑥𝑖, 𝑦𝑖), and (𝑥𝑗 , 𝑦𝑗) are the position of the current vehicle 𝑣𝑖 and its neighbor node 𝑣𝑗 , 

respectively, and 𝑅 denotes the communication range. 

4) Residual bandwidth: 𝑅𝐵𝑊𝑖 is one of the routing metrics applied to the fuzzy system in the 

next-hop selection policy in our scheme, which is computed by Eq. (20) [34]. 

(20) 𝑅𝐵𝑊𝑖 = 𝐶𝑟𝑎𝑡𝑒 − 𝛿𝐶𝑟𝑎𝑡𝑒  

where 𝐶𝑟𝑎𝑡𝑒 is the channel data rate, and 𝛿 denotes the total data generation rate computed as 

the sum of the bandwidth consumed by forwarding vehicle and its neighbors, including the 

MAC layer overhead, ACKs, and retransmissions. The EWMA method is used to consider the 

effect of traffic changes as follows: 

(21) 𝛿�̅� = (1 − 𝛼) × 𝛿𝑡−1̅̅ ̅̅ ̅̅ + 𝛼 × 𝛿𝑡 
where 𝛿�̅� is the average data generation rate according to the data generation rates at time 𝑡 and 𝑡 − 1, respectively, and 𝑎 is the configuration parameter set to 0.4. 

3.3.2.2.Fuzzy system design for forwarding vehicles selection strategy 

Our forwarding vehicle selection scheme is a TSK-FLS method with a four-input/one-output 

zero-order and 24 rules. In the fuzzification process, four quantifiable input parameters (e.g., 

crisp values), including load capacity, angular orientation, Euclidean distance, and residual 

bandwidth, are converted to the linguistic variables and expressed by {𝐿𝑜𝑤,𝐻𝑖𝑔ℎ}, {𝑆𝑚𝑎𝑙𝑙, 𝐿𝑎𝑟𝑔𝑒}, {𝑆𝑚𝑎𝑙𝑙, 𝐿𝑎𝑟𝑔𝑒}, and {𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ}, respectively, as shown in Figure 5.  

In addition, the fuzzy rule base (i.e., IF/THEN rules) in Table 3 is defined for ranking the one-

hop neighboring vehicles. The linguistic variables are denoted as {𝑉𝑒𝑟𝑦 𝐿𝑜𝑤 (𝑉𝐿), 𝐿𝑜𝑤(𝐿),𝑀𝑒𝑑𝑖𝑢𝑚(𝑀),𝐻𝑖𝑔ℎ(𝐻), 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ(𝑉𝐻)}. Finally, Figure 6 shows the 
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output membership function in the defuzzification process to get the crisp values. The 

defuzzification process in this level, similar to the first level, used the LOM method. 

  

(a) load capacity (b) angular orientation 

 
       

(c) Euclidean distance (d) residual bandwidth 

Figure 5. Input membership functions in the forwarding node selection strategy 

Table 3. Rule base in the forwarding node selection strategy 

THEN  IF    

Rule 

THEN  IF    

Rule Rank 𝜽𝒗𝒊,𝒗𝒋𝒏𝒐𝒓𝒎 𝑹𝑩𝑾𝒊 𝑳𝒄 𝑫𝒊𝒔𝒕𝒏𝒐𝒓𝒎 Rank 𝜽𝒗𝒊,𝒗𝒋𝒏𝒐𝒓𝒎 𝑹𝑩𝑾𝒊 𝑳𝒄 𝑫𝒊𝒔𝒕𝒏𝒐𝒓𝒎 Low Large Low Low Small 13. Low Small Low Low Small 1. Vey Low Large Low High Small 14. Low Small Low High Small 2. Low Large Medium Low Small 15. Medium Small Medium Low Small 3. Low Large Medium High Small 16. Low Small Medium High Small 4. Medium Large High Low Small 17. Medium Small High Low Small 5. Low Large High High Small 18. Low Small High High Small 6. Low Large Low Low Large 19. Medium Small Low Low Large 7. Low Large Low High Large 20. Low Small Low High Large 8. Medium Large Medium Low Large 21. High Small Medium Low Large 9. Low Large Medium High Large 22. Low Small Medium High Large 10. High Large High Low Large 23. Very High Small High Low Large 11. Low Large High High Large 24. Medium Small High High Large 12.  

 

Figure 6. Output membership function in the forwarding node selection strategy 
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3.3.3. Tuning fuzzy membership functions  

In our scheme, SARSA learning algorithm [40] is employed for tuning the consequent fuzzy 

output membership functions of intersection and forwarding node selection strategies. SARSA 

learning allows agents to learn online policy while interacting with their environments and is 

defined by quintuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑎𝑡+1). By considering the whole network as the 

environment, centralized SDN controller and RSUs are defined as our agents due to their ability 

to compute data routing paths. The learning task is finding the best parameters for output fuzzy 

membership functions in both strategies. It can be done by observing the current state 𝑠𝑡 of the 

environment and taking action 𝑎𝑡 based on their own policies 𝜋ℐ:𝒮ℐ → 𝒜ℐ and 𝜋𝒱:𝒮𝒱 → 𝒜𝒱. 

State-space, action-space, and immediate rewards in our policies are defined below. 

State-space: Each combination of antecedent parts in the intersection and forwarding vehicle 

selection policies is considered the agent’s state and shown as 𝒮ℐ = {𝑠1ℐ , 𝑠2ℐ , … , 𝑠𝑘ℐ}, and 𝒮𝒱 ={𝑠1𝒱 , 𝑠2𝒱 , … , 𝑠𝑙𝒱}, respectively.  

Action space: Two sets of actions, 𝑎𝒾(𝑡) ∈ 𝒜𝒱, and 𝑎𝓂(𝑡) ∈ 𝒜ℐ, are defined for tuning 

consequent fuzzy membership functions in the intersection and forwarding vehicle selection 

policies and displayed as 𝒜ℐ = {𝑎1ℐ , 𝑎2ℐ , … , 𝑎𝑘ℐ} and 𝒜𝒱 = {𝑎1𝒱 , 𝑎𝒱 , … , 𝑎𝑙𝒱}. The possible 

discrete actions in both cases consist of 11 singleton functions {0.0,0.1,0.2,0.3,0.4,0,5,0.6,07,0.8,0.9,1.0}. 
Reward: As a utility, agents will receive the rewards 𝑟𝑡ℐ𝓃,𝓂 (e.g., intersection selection reward) 

and 𝑟𝑡𝓋𝒾,𝒿  (e.g., relay node selection reward), and transition to new states. Then, the agents will 

update their current policies, 𝜋ℐ and 𝜋𝒱, according to the reward received to perform the optimal 

action. The following reward functions in both levels are explained.  

i. Intersection reward: The reward function 𝑟𝑡ℐ𝓃,𝓂 :𝒮ℐ × 𝒜𝓂 ⟼ ℝ for tuning the fuzzy 

output membership function of the intersection selection policy is obtained as Eq. (22). 𝑟𝑡ℐ𝓃,𝓂 = log2 (𝑅𝐺 × 𝑅𝑐𝑅𝐷 + 0.01) (22) 

 

where 𝑅𝐺 is the ratio of the green time to the intersection cycle time, 𝑅𝑐 shows the 

number of passing vehicles at the intersection in the green light duration, and 𝑅𝐷 

indicates the total number of vehicles stopped on all the roads at candidate intersection ℐ𝓂 and computed as Eq. (23) [41]. If the vehicle’s velocity is less than 𝑣𝑚𝑖𝑛, it is 

assumed that the vehicle is waiting. 𝐷𝑙𝑘 indicates the number of waiting vehicles at road 𝑙 and lane 𝑘. 

 

(23) 𝑅𝐷 = ∑ ∑ 𝐷𝑙𝑘𝑘
𝑘=1

𝑙
𝑙=1  

ii. Vehicle reward: For the fuzzy output membership function in the forwarding vehicle 

selection strategy, the reward 𝑟𝑡𝓋𝒾,𝒿 :𝒮𝓋 × 𝒜𝓋 ⟼ ℝ is calculated as: 

(24) 𝑟𝑡𝑣𝑖,𝑗 = log2 (𝑠𝑣𝑗(𝑡, 𝑡 − ∆𝑡) × 𝑛𝑣𝑗(𝑡)𝑐 + 1 + 0.01) 

where 𝑠𝑣𝑖(𝑡, 𝑡 − ∆𝑡) is the stability of the neighboring vehicle 𝑣𝑗 in the transmission 

range 𝑅 and computed based on [42], 𝑡 is the current time, and ∆𝑡 is the previous time 
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interval of sending Hello message. 𝑛𝑣𝑖(𝑡) denotes the local density of vehicle 𝑣𝑗, divided 

by the optimal local density found in [43]. Finally, 𝑐 as a reputation index shows the 

number of times a node between the two intersections is selected as a next-hop node. 

The reward function is divided by one to avoid ambiguity. 

Each rule 𝑅𝑖 in the fuzzy SARA strategy is depicted as if 𝑥1 is 𝐿𝑖1, 𝑥2 is 𝐿𝑖2, and 𝑥𝑛 is 𝐿𝑖𝑛, then 

(𝑎𝑖1 is 𝑄(i, 1), … , 𝑎𝑖𝑚 is 𝑄(𝑖,𝑚)). Here, 𝐿𝑖 = 𝐿𝑖𝑛 × …× 𝐿𝑖2 × 𝐿𝑖1 is a fuzzy set of the 𝑖th rule. 𝑚 

shows the number of possible discrete actions that are the same for both levels. 𝑎𝑖𝑗 denotes the 𝑗th candidate action, and 𝑄(𝑖, 𝑗) is the Q-value of the 𝑗th action in the 𝑖th rule. In the intersection 

selection strategy, 𝑥1, 𝑥2, and 𝑥3 are the distance from the candidate intersections to the 

destination intersection, the delay estimated, and moving vehicles towards intersections, 

respectively. Conversely, load capacity, Euclidean distance, angular orientation, and residual 

bandwidth are considered as 𝑥1, 𝑥2, and 𝑥3, respectively, in the forwarding vehicle selection 

strategy. In both fuzzy SARSA levels in rule 𝑖, action 𝑎𝑖𝑗 is chosen based on the softmax action 

selection rule as Eq. (25) [40]. 

(25) 𝑃(𝑎𝑖𝑗) = 𝑒𝑥𝑝(𝜓𝑖𝑄(𝑖, 𝑗)/𝛿)∑ 𝑒𝑥𝑝(𝜓𝑖𝑄(𝑖, 𝑘)/𝛿)𝑚𝑘=1  

The fire strength 𝜓𝑖 of each rule 𝑖 is calculated as Eq. (26). In addition, 𝛿 is a positive variable 

called temperature. 

(26) 𝜓𝑖 = 𝑀𝐼𝑁(𝜇𝑥1 𝑖𝑠 𝐿𝑖1(𝑥1), … , 𝜇𝑥𝑛 𝑖𝑠 𝐿𝑖𝑛(𝑥𝑛)) 

The rule with highest fire strength value is considered as output in both levels of fuzzy systems. 

The 𝑄 table will be updated according to Eq. (27) at the predefined intervals.  

(27) 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)) 

where 𝛼 is the learning rate, and 𝛾 depicts the discount factor. Algorithm 1 shows the process 

of the fuzzy SARSA learning algorithm in tuning output fuzzy membership functions of the 

intersection selection and forwarding vehicle selection strategies. 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏: 𝐅𝐮𝐳𝐳𝐲 𝐒𝐀𝐑𝐒𝐀 𝐥𝐞𝐚𝐫𝐧𝐢𝐧𝐠  Initialize 𝑄(𝑠𝑡 , 𝑎𝑡) = 0 for all 𝑠𝑡  and 𝑎𝑡   1: Initialize α and 𝛾 2: 𝐟𝐨𝐫 every time step 𝑡 𝐝𝐨   3:      Initialize 𝑠𝑡  as an antecedent part of the fuzzy system 4:      Calculate the firing strength of each rule using the MIN operator 5:      Choose the 𝑅𝑖  rule to run (𝜇(𝑅𝑖) ← 𝑚𝑎𝑥𝑗=1,..,𝑧𝜇(𝑅𝑗)) 6:      𝐰𝐡𝐢𝐥𝐞 𝑎𝑡  is not a terminal state, 𝐝𝐨 7:           Take action 𝑎𝑖𝑗  using modified Boltzman action selection  8:           Observe the reward 𝑟𝑡  and next state 𝑠𝑡+1 9:           Update 𝑄(𝑠𝑡 , 𝑎𝑡) value using Eq. (27) 10:           Current state 𝑠𝑡 ← 𝑠𝑡+1 11:           Current action 𝑎𝑡 ← 𝑎𝑡+1 12:     𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 13: 𝐞𝐧𝐝 𝐟𝐨𝐫 14: 
 

3.3.4. Proposed SDN-enabled vehicular data routing 

Since the end-to-end routing performance depends on all intersections and relays constituting 

data transmission paths, their utilities based on the descriptions in Section 3.3 are considered 
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in our routing scheme. Let 𝓊ℐ𝓃 ,ℐ𝓂 be the utility of candidate intersection ℐ𝓂 from intersection ℐ𝓃, and 𝓊𝓋𝒾 ,𝓋𝒿  is the link utility between two vehicles 𝓋𝒾 , 𝓋𝒿. The utilities of formed routes 

consisting of sequence intersections and relays are defined as Eq. (28). 

(28) 
𝒰(ℐ𝓈,ℐ𝒹) = ∑ 𝓊ℐ𝓃 ,ℐ𝓂ℐ𝓃 ,ℐ𝓂 ∈{ℐ𝓈,𝒱ℐ ,ℐ𝒹} ,           𝒰(𝓋𝓈,𝓋𝒹) =  ∑ 𝓊𝓋𝒾 ,𝓋𝒿𝓋𝒾 ,𝓋𝒿  ∈{𝓋𝓈,𝒱𝑣,𝑣𝑑}  

where 𝒰(ℐ𝓈,ℐ𝒹), and 𝒰(𝓋𝓈,𝓋𝒹) show the utilities of the sequence intersections and forwarding 

vehicles in the data transmission path. Due to the different combinations of intersections and 

vehicular nodes, the centralized SDN controller can form 𝓀 various paths 𝒫𝓀 ∈ 〈𝒫1, 𝒫2, . . . , 𝒫𝒽〉 
consisting of a sequence of intersections 〈ℐ𝓈, . . , ℐ𝓃, ℐ𝓂. . , , ℐ𝒹〉. In addition, different routes ℛ𝓇 ∈〈ℛ1,ℛ2, . . . ,ℛ𝓇〉 consisting of various forwarding vehicles 〈𝓋𝓈 , … , 𝓋𝒾, 𝓋𝒿, … , 𝓋𝒹〉 can be formed 

in the selected intersections. Therefore, to have high end-to-end routing performance, the best 

sequence of intersections and forwarding vehicles among all possible paths found must form 

the data routing path. First, a sequence intersection with the maximum utility using Eq. (29) is 

selected among all intersection sequences from the source to the destination intersection. 

(29) 𝑚𝑎𝑥𝒫𝓀∈〈𝒫1,𝒫2,...,𝒫𝒽〉 𝒰𝒫𝓀〈ℐ𝓈,..,ℐ𝓃,ℐ𝓂..,,ℐ𝒹〉 
After determining the intersections with maximum utility, our scheme in the selected 

intersection sequence has chosen the route consisting of vehicle links with maximum utility 

according to Eq. (30). 

(30) 𝑚𝑎𝑥ℛ𝓇∈〈ℛ1,ℛ2,...,ℛ𝓀〉 𝒰ℛ𝓇〈𝓋𝓈,…,𝓋𝒾,𝓋𝒿,…,𝓋𝒹〉 
Finally, to ensure data deliver successfully from source to destination, several constraints are 

considered as follows: 

(31a) 𝜍(𝑣𝑖,𝑣𝑗) + 𝜍(𝑣𝑗,𝑣𝑖) ≤ 1,                                                                             ∀ 𝑣𝑖 ∈ 𝒱𝑣 ,  𝑣𝑗 ∈ 𝑁(𝑣𝑖) 

(31b) 𝜒(ℐ𝓃 ,ℐ𝓂) + 𝜒(ℐ𝓂 ,ℐ𝓃) ≤ 1,                                                                         ∀ ℐ𝓃 ∈ 𝒱ℐ, ℐ𝓂 ∈ 𝑁(ℐ𝓃) 
(32) 𝑑𝑖𝑠𝑡𝑐𝑢𝑟𝑣𝑒ℐ𝓂 ,ℐ𝒹 ≤ 𝑑𝑖𝑠𝑡𝑐𝑢𝑟𝑣𝑒ℐ𝓃 ,ℐ𝒹 ,                                                                           ∀〈ℐ𝓃, ℐ𝓂, ℐ𝒹〉 ∈ 𝒱ℐ 

(33) 𝑑𝑖𝑠𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑣𝑖,𝑣𝑗) ≤ 𝑅,                                                                                     ∀ 𝑣𝑖 ∈ 𝒱𝑣 ,  𝑣𝑗 ∈ 𝑁(𝑣𝑖)  

(34) 𝐷𝑒𝑡𝑒(𝑣𝑠, 𝑣𝑑) = ∑ (( 1𝜇 − 𝜆) + 𝑙𝜑 + 𝑑(𝑣𝑖,𝑣𝑗)𝛾 )(𝑣𝑖,𝑣𝑗)∈{𝑣𝑠,𝒱𝑣,𝑣𝑑} ≤ Δ,    ∀ 𝑣𝑖 ∈ 𝒱𝑣,  𝑣𝑗 ∈ 𝑁(𝑣𝑖) 

 Constraint 1: The following two constraints are considered to avoid nodes trapped in 

the routing loop: 

i. (31a): The variable 𝜍(𝑣𝑖,𝑣𝑗) is set to one if data is sent from node 𝑣𝑖 to 𝑣𝑗; 

otherwise, it is set to zero. 

ii. (31b): If a forwarding vehicle is traveled from ℐ𝓂 to ℐ𝓃, 𝜒(ℐ𝓂,ℐ𝓃) is equal to one; 

otherwise equals zero. 

 Constraint 2 (32): To ensure the progress of data packets toward the destination, the 

curve distance of candidate intersections to the destination intersection must be less 

than the curve distance of the current intersection to the destination intersection. 
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 Constraint 3 (33): Let 𝑑𝑖𝑠𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑣𝑖,𝑣𝑗)
 is defined as the estimated distance between 

vehicles 𝑣𝑖 and 𝑣𝑗  and 𝑅 be the transmission radius between two neighbor's vehicles. 𝑑𝑖𝑠𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑣𝑖,𝑣𝑗)
 must be less than 𝑅; otherwise, the data forwarding will fail. 

 Constraint 4 (34): The total end-to-end delay of the application should not exceed the 

delay constraint Δ. 𝒱𝑣 is a set of relay vehicles in the data transmission path. To find 

out the definitions of contained parameters in Eq. (34), please see Eq. (11). 

The best routing path is computed in the centralized SDN or RSUs at time 𝑡 through Dijkstra 

algorithm. Assuming that packet 𝑘 is sent from source 𝑣𝑠(𝑘) to destination 𝑣𝑑(𝑘), Algorithm 2 

summarized our SDN-enabled data routing process. Given the local density, two possibilities 

are considered in the routing processing: 1) the source node is within the transmission range of 

RSU, and 2) the source node is outside the RSU’s communication range. In the first case, 𝑣𝑠(𝑘) 
forwards a path request message directly to the RSU (line 3). It includes source and destination 

IDs, road ID, data packet size, and delay constraint of application. Upon receiving the route 

request packets, controller perform the routing algorithm to specify the most suitable path 

between the source-destination nodes (lines 5-6).  𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐: 𝐒𝐃𝐍_𝐞𝐧𝐚𝐛𝐥𝐞𝐝 𝐝𝐚𝐭𝐚 𝐫𝐨𝐮𝐭𝐢𝐧𝐠 𝐟𝐨𝐫 every packet that 𝑣𝑖  needs to forward, 𝐝𝐨 1: 
    𝐢𝐟 𝑣𝑠 is within the RSUs range, 𝐭𝐡𝐞𝐧 2:           𝑣𝑠 sends a route request to RSU 3:           𝐢𝐟 RSU has a route to 𝑣𝑑  𝐭𝐡𝐞𝐧 4:                 RSU computes the utilities of intersections and relay vehicles              according to the fuzzy SARSA Algorithm in Section 3.3 

5:                 RSU compute𝑠 the best path based on Eqs. (29), (30) and sends it to 𝑣𝑠 6: 
         𝐞𝐥𝐬𝐞 7:                 RSU sends the request to the centralized SDN controller 8:                 SDN controller computes the utilities of intersections and relay vehicles              according to the fuzzy SARSA Algorithm in Section 3.3 

9:                 SDN controller computes the best path based on Eqs. (29), (30) and sends it to 𝑣𝑠 10:         𝐞𝐧𝐝 𝐢𝐟 11:     𝐞𝐥𝐬𝐞 12:           𝐢𝐟 𝑣𝑑  is a one hop neighbor of 𝑣𝑖 , 𝐭𝐡𝐞𝐧 13:                𝑣𝑖  forwards the packet directly to 𝑣𝑑  14: 
         𝐞𝐥𝐬𝐞 𝐢𝐟 𝑣𝑖  has neighbor nodes 𝐭𝐡𝐞𝐧 15: 
               compute the utility of neighbor nodes based on Section 3.3 16:                𝑣𝑖  chooses the neighbor with maximum utility as the next hop node 17:          𝐞𝐥𝐬𝐞 18:                𝑣𝑖  uses the carry and forward mechanism 19:          𝐞𝐧𝐝 𝐢𝐟 20:    𝐞𝐧𝐝 𝐢𝐟 21: 𝐞𝐧𝐝 𝐟𝐨𝐫 22: 

 

The request message is transmitted to the SDN controller if the destination is outside the local 

controller's communication range (line 8). SDN computes the transmission path, including a 

sequence of intersections and relay nodes. Then, the obtained route through the local controller 

in a replay packet is sent back to the source vehicle (lines 9-10). If the destination of packet 𝑘 

is in the neighbor table, packet 𝑘 is delivered to it directly (lines 13-14). Finally, if the source 

node is not within the local controller’s communication range, the forwarding node selects the 

best relay node obtained by fuzzy results (lines 16-17). If the forwarding vehicle has no 

neighbors within its communication range, it uses a carry-and-store mechanism. This process 
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will proceed until the carrier vehicle arrives at the appropriate neighbor vehicle or controller 

node located at the next intersection (line 19). 

4. Performance analysis 

The performance evaluation of our HIFS scheme is discussed in this section in various 

scenarios compared to the different state-of-the-art methods, including real-time evaluation of 

road conditions using CP packets (e.g., ITAR-FQ [31]), traffic light aware strategy (e.g., MISR 

[28]), and SDN-enabled routing scheme (e.g., GLS [16]). Details of these methods for selecting 

intersections and relay nodes are described in Section 2. 

4.1. Simulation settings 

Our scheme and other compared methods were simulated via NS-3.29 [44] as a network 

simulator and SUMO as a mobility generator tool [45] to generate realistic vehicle mobility. 

The simulated scenario describes real urban roads belonging to Los Angeles in USA, with an 

area of 3000 meters by 300 meters extracted from OpenStreetMap (OSM) (see Figure 7). The 

considered scenario includes the different number of lanes, intersections, and varied traffic 

light cycles. The car-following mobility model was used in SUMO for the movement of 

vehicles. In this model, the velocity of a node depends on the velocity of the vehicular node 

ahead of it. Before initiating the simulation, the vehicular nodes were distributed randomly. As 

the simulation starts, each vehicle moves on the roads with a minimum and maximum velocity 

of 10 km/h to 90 km/h. The Nakagami-m model was considered as a propagation model in the 

physical layer. RSUs as fixed nodes were located at intersections, and Open Flow protocol was 

installed on them. Vehicles and RSUs have multiple user interfaces, including LTE, WiMax, 

and IEEE 802.11p. The transmission radius was varied according to the interfaces. Using UDP, 

ten randomly source-destination pairs with the data packet sizes of 512 bytes and a generation 

rate of two packets per second as foreground traffic were produced by the Constant Bit Rate 

(CBR) traffic flows. The foreground traffic was generated 30 seconds after the simulation 

started to reduce the effect of transient changes. Also, the last generated foreground traffic was 

sent 50 seconds before the simulation ended. Background traffic, including ten random source-

destination pairs with various data packet sizes, is also created to interfere with the foreground 

traffic. That is’ why source-destination pairs between the foreground and background flows are 

overlapped to each other. It is assumed that each vehicle (e.g., source node or an intermediate 

node) can get the positional information of the destination with a query of a centralized 

administration unit such as RLSMP [46]. Each point of each routing scheme in all graphs is an 

average of 30 simulations, where the error bars indicate the 95% confidence intervals. Each 

simulation duration is set to 500 seconds. The tunable simulation parameters are detailed in 

Table 4. 
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Figure 7. Los Angeles urban scenario 

imported to SUMO 

 

Table 4. Simulation parameters 

Simulation Parameter Value 

Number of Vehicles 50-500 

Network Simulator NS-3.29 

Simulation Area Urban, 3000 m×3000 m 

Mobility Generator SUMO 

Wireless Technology 802.11p, LTE, WiMax 

Transmission Range 300 m 

OpenFlow Module OFSwitch1.3 

Channel Data Rate 6 Mbps 

Velocity of Vehicles 10-90 km/h 

Background/ Foreground Connection Paris 10 

Simulation Duration 500 s 

Traffic Type Constant Bit Rate (CBR) 

Queue Length 50 packets 

Hello Interval (𝜏) 1 s 

Size of Data Packets for Foreground Traffic 512 Byte 

Size of Data Packets for Background Traffic 256-2048 Byte  

Propagation Model Nakagami-m 

Foreground Packet Generation Rate  0.5 Packet/s 

Background Traffic Load 0.1 Mbps 

Learning Rate (𝛼) 0.05 

Discount Factor (𝛾) 0.95 

Threshold (𝜀) 0.65 

Delay Constraint (Δ)  1-2 s 

Temperature (𝛿) 0.1 

Q-Table Update Time  500 milliseconds 

Stopped Vehicles (𝑣𝑚𝑖𝑛) 0.5 m/s 

Number of Run 30 
 

 

4.2. Performance metrics. 

 Packet Delivery Ratio (PDR): PDR is defined as the ratio of successfully received 

data packets at the destination vehicular node to the number of data packets sent at the 

source vehicle. 

 Average End to End Delay (AE2ED): AE2ED depicted the average end-to-end 

delay of data packets sent from the source vehicle and received at the destination. 

 Path length (PL): PL is computed as the sum of the curve distances of the vehicle 

links from the source to the destination node that make up the data transmission path. 

 Normalized Routing Overhead (NRO): NRO is defined as the size of the control 

message sent to the size of data packets successfully received at the destination. 

4.3. Evaluation scenarios 

Two sets of tests were employed to assess the effectiveness of routing schemes; the following 

parameters in them are varied. 

 Vehicle density changes: Vehicle density was changed from 50 to 500 vehicles. 

Traffic lights duration in this test is set to 60 seconds. 

 Different traffic light duration: The traffic light duration varied from 60 seconds to 

150 seconds. The time ratio of green and red traffic lights is 1:1. It means that the first 
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half of the traffic lights period equals the green light time, and the second half equals 

the red-light duration. The number of vehicles in this test is set to 400 vehicles. 

4.4. Simulation results 

4.4.1. Packet delivery ratio 

The evaluated performance of the ITAR-FQ, MISR, and GLS methods compared to our HIFS 

scheme are shown in Figure 8 with respect to the packet delivery ratio for the different number 

of vehicles and various traffic lights duration. For various vehicle densities, as shown in Figure 

8(a), the packet delivery ratio is increased in all compared methods at densities from 50 to 300. 

Then, from 300 to 500 vehicles, the GLS method and our HIFS scheme have slightly increased, 

while ITAR-FQ and MISR methods have declined. At low densities, our HIFS and GLS 

scheme reduced the likelihood of nodes trapped into the local maxima problem by considering 

the global perspective and using microscopic and macroscopic information. The MISR and 

ITAR-FQ schemes with limited visibility have led to sub-optimal routing decisions. Therefore, 

their difference and our scheme at low densities are significant. At higher densities, limited 

bandwidth and nodes competition caused the performance of all routing methods to be 

restricted. Our scheme has adapted routing decisions considering traffic light conditions, 

resulting in a higher packet delivery ratio than all compared methods. As shown in Figure 8(a), 

by increasing vehicle density, the performance improvement of our proposed HIFS scheme is 

more significant. Since the possibility of forming long queues of vehicles waiting behind red 

lights is vague at low densities, our HIFS and GLS method differences are negligible. Figure 

8(b) shows the influence of various traffic lights duration on the performance of all compared 

schemes. As the traffic light duration increases, a declining behavior in the packet delivery 

ratio of all schemes can be seen in Figure 8(b). Lack of consideration of traffic light's effects 

when selecting intersections besides the afore-mentioned ITAR-FQ scheme's shortfalls has 

further reduced its performance. The GLS scheme also suffers from the lack of considering the 

traffic light's effects during the data routing process, resulting in reduced performance upon 

increasing traffic light duration. Our scheme can deal with dynamic vehicular environments 

bound to the road topology with different traffic light conditions by tuning the vehicular 

environment-dependent fuzzy membership functions. Hence, our HIFS scheme offered more 

suitable performance than all compared methods under various traffic light circumstances. 

  

(a) different numbers of vehicles (b) various traffic lights period 

 Figure 8. Packet delivery ratio  
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4.4.2. Average end-to-end delay 

The effect of vehicle densities and various traffic lights duration on the average end-to-end 

latency is shown in Figure 9. Figure 9(a) indicates the advantages of our HIFS proposed over 

other methods in terms of average delay as a function of vehicle density. The end-to-end delay 

has two different behaviors in various vehicle densities. Initially, it decreased for all compared 

schemes at densities of 50 to 300 vehicles, then increased at densities from 300 to 500. At low 

densities, trapping nodes into the local maxima problem has occurred more. Consequently, in 

a scattered environment, the end-to-end delay is more. Node's competition in the channel and 

passing more hop counts, besides higher congestion level, are the main reasons for the 

increased average delay at high vehicle densities (e.g., from 300 to 500 vehicles). Figure 9(a) 

shows that our HIFS scheme performs significantly better than the MISR and ITAR-FQ 

methods, especially at low densities. Moreover, our HIFS scheme has the minimum delay at 

high densities over the traditional intersection-based routing schemes for the following reasons: 

1) Using buffering delay and limited bandwidth in the forwarding selection strategy; 2) 

Considering traffic light effects in the intersection selection strategy; 3) Having the global 

visibility of the vehicular environments. The ITAR-FQ method has increased hop counts by 

considering bidirectional vehicles and limited visibility in the next-hop node selection. 

Broadcasting of CP packets, especially at high densities, has further increased latency in the 

ITAR-FQ scheme. Greedily choosing a high-density path, increases the processing, 

transmission, and buffering delays due to high packet congestion and node competition. The 

GLS and MISR methods suffer from this problem. In addition, lack of consideration of the 

vehicles waiting behind red-light traffic has augmented the increased delay in the GLS scheme 

at high densities. Figure 9(b) compares end-to-end latency for all compared routing schemes at 

various traffic light durations. According to Figure 9(b), the latency increases in all routing 

methods by increasing the traffic lights period. The GLS and ITAR-FQ methods have caused 

further delays due to the increased unintended hop counts in the data routing process. It is due 

to the inability of these methods to avoid selecting intersections with long waiting queues of 

vehicles behind red traffic lights. The obtained results in Figure 9(b) show that the data received 

at the destination in our HIFS scheme has experienced lower delay than in other methods. This 

is because our HIFS scheme can avoid passing the paths with more hop counts by considering 

traffic light effects in selecting intersections. 

  

(a) different numbers of vehicles (b) various traffic lights period 

Figure 9. End-to-end delay  
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4.4.3. Path length 

Figure 10 depicts the path length for the different numbers of vehicles and various traffic lights 

duration in all compared schemes. Increasing the path length can be affected by increased hop 

counts. Increasing vehicle densities increases path length for all schemes (see Figure 10(a)). 

Because of the increase in density, forwarding vehicles are more likely to be closer. The ITAR-

FQ method has caused a further increase in path length by considering densities in both 

directions when selecting the next-hop nodes. The MISR method also increased the path length, 

regardless of the distance of intersections in its intersection selection mechanism. The GLS and 

HIFS schemes, considering the global traffic information, have reduced the path length 

compared to the MISR and ITAR-FQ methods. The lack of consideration of traffic lights 

effects in the GLS method has led to selecting areas with a longer duration of remaining red 

lights traffic. Consequently, the path length traveled by data packets increased. The adaptability 

of our scheme in determining intersections by taking into account the impact of traffic lights 

has led to performing better than the GLS scheme. By increasing vehicle densities due to the 

creation of longer queues behind the red lights, the difference between our HIFS method and 

the GLS scheme has increased. The influence of various traffic light duration on the path length 

for the ITAR-FQ, MISR, GLS protocols, and our proposed HIFS scheme is assessed in Figure 

10(b). Forming longer queues of vehicles waiting behind red traffic lights is the leading cause 

of increasing the traveled path length in the various traffic lights duration. The GLS scheme 

prioritized high-density areas without considering the traffic light effects, resulting in more 

path length than our method. To avoid jeopardizing the next-hop node selection process and 

interrupting network connectivity, the proposed method, in addition to choosing intersections 

with proper connections, bypasses the intersections with long queues formed behind red lights. 

  

(a) different numbers of vehicles (b) various traffic lights period 

Figure 10. Path length  

4.4.4. Normalized routing overhead 

Figure 11 shows the communication overhead for all compared schemes at different vehicle 

densities and various traffic lights duration. Figure 11(a) reveals that the communication 

overhead has increased by increasing vehicle densities. The increased demands for more 

communications have caused more control messages. The ITAR-FQ protocol has highest 

routing overhead due to the broadcasting of CP packets. The SDN-based methods resulted in 

less overhead due to the provided overall visibility. Because by developing routing sight and 
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specifying routes with higher stability, broadcasting new control packets requiring new path 

discovery is reduced. Our method's adaptability in dealing with uncertainty and ambiguity by 

considering vehicular environment attributes has reduced route failure and thus diminished 

requests to discover new routes compared to the GLS method. Figure 11(b) shows the effect 

of various traffic lights' duration on routing overhead. Since the number of vehicles is fixed, 

the increased overhead, in this case, is due to the reduction in the packet delivery ratio of 

routing schemes. The proposed method performs better than other methods, recalling that 

routing overhead relies on the packet delivery ratio. 

  

(a) different numbers of vehicles (b) various traffic lights period 

Figure 11. Normalized overhead  

4.4.5. Discussion  

The average performance enhancement of our HIFS scheme for all performance metrics 

compared to other methods in various densities and traffic lights duration are outlined in Tables 

5 and 6. The improvement enhancement reported in Table 5 shows that our HIFS scheme 

performed better than the other compared methods in all performance metrics for various 

densities. Moreover, obtained gains shown in Table 6 reveal that the differences between our 

HIFS scheme with the ITAR-FQ and GLS methods have increased by increasing traffic light 

duration. Our HIFS scheme has dealt with the ambiguity and uncertainties of the vehicular 

environment by using the fuzzy reinforcement learning algorithm for tuning output 

membership functions based on the time-varying traffic light conditions. Therefore, besides 

proving the shortcomings of traditional intersection-based routing methods, our scheme 

outperformed all performance metrics compared to the SDN-enabled vehicular routing scheme. 

Table 5. Average performance gains of HIFS for 

different vehicle densities 

 

Table 6. Average performance gains of HIFS for 

various traffic lights duration 
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(%) 

PL 

(%) 

AE2ED 

(%) 

PDR 

(%) 

     Metric 

Scheme 

61.37 27.67 37.59 51.42 MISR 

67.44 35.38 44.37 48.61 ITAR-FQ 

29.23 13.94 10.8 6.64 GLS 
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(%) 

PL 

(%) 

AE2ED 

(%) 

PDR 

(%) 

      Metric 

Scheme 

55.6 22.83 29.11 46.09 MISR 

66.92 37.56 47.91 60.65 ITAR-FQ 

31.87 16.7 19.97 10.92 GLS 
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5. Conclusion 

A hierarchical SDN-enabled vehicular intersection-based routing scheme was proposed in this 

paper by complete accessibility to vehicular environment information. In our scheme, 

candidate intersections were initially prioritized by jointly considering fuzzy values of curve 

intersections distance, predicting the number of nodes moving towards candidate intersections, 

and estimating the delay between the two intersections. Fuzzy results chose a sequence of 

intersections with maximum utility from the source to the destination intersection. Then, in the 

selected sequence intersections, a relay sequence with maximum utility was chosen by 

considering multi fuzzy factors, including Euclidean distance, residual bandwidth, congestion, 

and angular orientation, to participate in the data forwarding process. A reinforcement learning 

algorithm at both levels was used to tune the routing policies depending on the time-varying 

conditions. At the intersection selection level, the effect of road constraints, including traffic 

lights, was employed to tune the output membership functions. Stability, reputation index, and 

density were also utilized to adjust the output membership function of the next-hop nodes 

selection policy. Extensive simulations were performed in an urban scenario using NS-3 and 

SUMO. The obtained results show that our proposed strategy has led to significant 

improvement in terms of all routing performance over the state-of-the-art schemes. Therefore, 

the effectiveness of considering road structures and traffic light conditions in our routing 

decisions was confirmed. Finally, our strategy can be extended to various urban scenarios in 

our near future work. 
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