Abstract
Lack of a fully vehicular topology view and restricted vehicles' movement to streets with the time-varying traffic light conditions have caused drastic gaps in the traditional vehicular routing protocols. Using software-defined networks (SDN), this paper proposes HIFS, a Hierarchical Intersection-based routing strategy that incorporates Fuzzy SARSA reinforcement learning to fill these gaps. At the first level of our HIFS scheme, a utility-based intersections selection policy is presented using fuzzy logic that jointly considers delay estimation, curve distance, and predicted of moving vehicles towards intersections. Then, a fuzzy logic-based path selection policy is proposed to choose the paths with highest flexibility against the intermittent connectivity and increased traffic loads. Residual bandwidth, Euclidean distance, angular orientation, and congestion are considered inputs of the fuzzy logic system. Meanwhile, traffic light states and nodes' information are used to tune the output fuzzy membership functions via reinforcement learning algorithm. The efficiency of our scheme in controlling ambiguity and uncertainty of the vehicular environment is confirmed through simulations in various vehicle densities and different traffic lights duration. Simulation results of average gains obtained for both scenarios show that our HIFS scheme increases the packet delivery ratio on average by 48.75%, 54.63%, and 8.78%, increases the throughput by 48.66%, 53.79%, and 8.61%, reduces end-to-end delay by 33.35%, 46.14%, and 15.38%, reduces the path length by 25.25%, 36.47%, and 15.32%, and reduces normalized routing overhead by 37.09%, 49.79%, and 20.17%, compared to MISR, ITAR-FQ, and GLS methods, respectively.














Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
Not applicable.
References
Al-Qurabat AKM, Mohammed ZA, Hussein ZJ (2021) Data traffic management based on compression and MDL techniques for smart agriculture in IoT. Wireless Pers Commun 120(3):2227–2258
Al-Qurabat AKM (2021) A lightweight huffman-based differential encoding lossless compression technique in IoT for smart agriculture. Int J Comput Digital Syst 11(1). https://doi.org/10.12785/ijcds/110109
Saeedi IDI, Al-Qurabat AKM (2022) Perceptually important points-based data aggregation method for wireless sensor networks. Baghdad Sci J 19(4):0875–0875
Al-Qurabat AKM, Abdulzahra SA (2020) An overview of periodic wireless sensor networks to the internet of things. IOP Conf Ser: Mater Sci Eng 928(3):32055. https://doi.org/10.1088/1757-899X/928/3/032055
Al-Qurabat AKM, Abdulzahra SA, Idrees AK (2022) Two-level energy-efficient data reduction strategies based on SAX-LZW and hierarchical clustering for minimizing the huge data conveyed on the internet of things networks. J Supercomput. 78:17844–17890. https://doi.org/10.1007/s11227-022-04548-7
Al-Qurabat AKM, Idress AK, Makhoul A, Jooude CA (2022) A bi-level data lowering method to minimize transferring big data in the sensors of IoT applications. Karbala Int J Modern Sci 8(2):123–138
Jawad GAM, Al-Qurabat AKM, Idrees AK (2022) Maximizing the underwater wireless sensor networks’ lifespan using BTC and MNP5 compression techniques. Ann Telecommun 77:703–723. https://doi.org/10.1007/s12243-021-00903-6
Al-Qurabat AKM, Salman HM, Finjan AAR (2022) Important extrema points extraction-based data aggregation approach for elongating the WSN lifetime. Int J Comput Appl Technol 68(4):357–368
Naderi M, Ghanbari M (2023) Adaptively prioritizing candidate forwarding set in opportunistic routing in VANETs. Ad Hoc Netw 140:03048. https://doi.org/10.1016/j.adhoc.2022.103048
Cunha F, Villas L, Boukerche A, Maia G, Viana A, Mini RAF, Loureiro AAF (2016) Data communication in VANETs: Survey, applications and challenges. Ad Hoc Netw 44:90–103
Islam MMd, R-Khan MT, Saad MM, Kim D (2021) Software-defined vehicular network (SDVN): a survey on architecture and routing. J Syst Archit 114:101961
Zemouri S, Djahel S, Murphy J (2015) A fast, reliable and lightweight distributed dissemination protocol for safety messages in urban vehicular networks. Ad Hoc Netw 27:26–43
Qadri NN, Fleury M, Altaf M, Ghanbari M (2010) Multi-source video streaming in a wireless vehicular ad hoc network. IET Commun 4(11):1300–1311
Srivastava A, Prakash A, Tripathi R (2020) Location based routing protocols in VANET: Issues and existing solutions. Veh Commun 23:100231
Al-Heety OS, Zakaria O, Ismail M, Shakir MM, Alani S, Alsariera H (2020) A comprehensive survey: Benefits, services, recent works, challenges, security and use cases for SDN-VANET. IEEE Access 8:91028–91047
Naderi M, Zargari F, Sadatpour V, Ghanbari M (2017) A 3-parameter routing cost function for improving opportunistic routing performance in VANETs. Wireless Pers Commun 97(1):1–15
Darwish T, Abu Bakar K (2016) Traffic aware routing in vehicular ad hoc networks: Characteristics and challenges. Telecommun Syst 61(3):489–513
Darwish T, Abu Bakar K (2016) Lightweight intersection-based traffic aware routing in urban vehicular networks. Comput Commun 87:60–75
Abdel-Halim IT, Fahmy HMA (2018) Prediction-based protocols for vehicular ad hoc networks: Survey and taxonomy. Comput Netw 130:34–50
Jaballah WB, Conti M, Lal C (2019) Software-defined VANETs: Benefits, challenges, and future directions. Preprint at http://arxiv.org/abs/1904.04577
Kadhim AJ, H-Seno SA (2019) Energy-efficient multicast routing protocol based on SDN and fog computing for vehicular networks. Ad Hoc Netw 85:68–81
Zhao L, Zhao W, Hawbani A, Al-Dubai AY, Min G, Zomaya AY, Gong C (2021) Novel online sequential learning-based adaptive routing for edge software-defined vehicular networks. IEEE Trans Wireless Commun 20(5):2991–3004
Oubbati OS, Atiquzzaman M, Lorenz P, Baz A, Alhakami H (2020) SEARCH: an SDN-enabled approach for vehicle path-planning. IEEE Trans Veh Technol 69(12):14523–14536
Noorani N, H-Seno SA (2020) SDN and fog computing-based switchable routing using path stability estimation for vehicular ad hoc networks. Peer Peer Netw Appl 13(3):948–964
Zhao L, Bi Zh, Lin M, Hawbani A, Shi J, Guan Y (2021) An intelligent fuzzy-based routing scheme for software-defined vehicular networks. Comput Netw 187:107837
Abbas MT, Muhammad A, Song WC (2020) SD-IoV: SDN enabled routing for internet of vehicles in road-aware approach. J Ambient Intell Humaniz Comput 11(3):1265–1280
Venkatramana DKN, Srikantaiah SB, Moodabidri J (2017) SCGRP: SDN-enabled connectivity-aware geographical routing protocol of VANETs for urban environment. IET Netw 6(5):102–111
Kong D, Zhang G (2020) Ant colony algorithm-based routing protocol in software defined vehicular networks. In: Proceedings of the 2020 the 4th International Conference on Innovation in Artificial Intelligence, ICIAI 2020, Association for Computing Machinery, New York, NY, USA, pp 200–204
Gao Y, Zhang Z, Zhao D, Zhang Y, Luo T (2018) A hierarchical routing scheme with load balancing in software defined vehicular Ad hoc networks. IEEE Access 6:73774–73785
Chahal M, Harit S (2019) Network selection and data dissemination in heterogeneous software-defined vehicular network. Comput Netw 161:32–44
Balta M, Ozçelik İ (2020) A 3-stage fuzzy-decision tree model for traffic signal optimization in urban city via a SDN based VANET architecture. Futur Gener Comput Syst 104:142–158
Hagras H (2007) Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput Intell Mag 2(1):30–43
Mardani MR, Ghanbari M (2018) Robust resource allocation scheme under channel uncertainties for LTE-A systems. Wireless Netw 25(3):1313–1325
Ding Q, Sun B, Zhang X (2016) A traffic-light-aware routing protocol based on street connectivity for urban vehicular Ad hoc networks. IEEE Commun Lett 20(8):1635–1638
Chang J-J, Li Y-H, Liao W, Chang C (2012) Intersection-based routing for urban vehicular communications with traffic-light considerations. IEEE Wirel Commun 19(1):82–88
Xia Y, Qin X, Liu B, Zhang P (2018) A greedy traffic light and queue aware routing protocol for urban VANETs. China Commun 15(7):77–87
Zhou S, Li D, Tang Q, Fu Y, Guo C, Chen X (2021) Multiple intersection selection routing protocol based on road section connectivity probability for urban VANETs. Comput Commun 177:255–264
Cao Z, Silva BN, Diyan M, Li J, Han K (2020) Intersection routing based on fuzzy multi-factor decision for VANETs. Appl Sci 10(18):6613
Cao Z, Fan Z, Kim J (2021) Intersection-based routing with fuzzy multi-factor decision for VANETs. Appl Sci 11(16):7304
He T, He R, Yu C (2021) Intersection-based traffic-aware routing with Fuzzy Q-learning for urban VANETs. In: 2021 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), pp 511–515
Debnath A, Basumatary H, Dhar M, Debbarma MK, Bhattacharyya BK (2021) Fuzzy logic-based VANET routing method to increase the QoS by considering the dynamic nature of vehicles. Computing 103(7):1391–1415
Naderi M, Zargari F, Ghanbari M (2019) Adaptive beacon broadcast in opportunistic routing for VANETs. Ad Hoc Netw 86:119–130
Alzamzami O, Mahgoub I (2020) Link utility aware geographic routing for urban VANETs using two-hop neighbor information. Ad Hoc Netw 106:102213
Luo L, Sheng L, Yu H, Sun G (2021) Intersection-based V2X routing via reinforcement learning in vehicular ad hoc networks. IEEE Trans Intell Transp Syst 23(6):5446–5459. https://doi.org/10.1109/TITS.2021.3053958
Srivastava A, Prakash A, Tripathi R (2020) Fuzzy-based beaconless probabilistic broadcasting for information dissemination in urban VANET. Ad Hoc Netw 108:102285
Huynh T-T, Dinh-Duc A-V, Tran C-H (2016) Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. J Commun Netw 18(4):580–588
Tal I, Muntean GM (2017) Towards reasoning vehicles: a survey of fuzzy logic-based solutions in vehicular networks. ACM Comput Surv (CSUR) 50(6):1–37
Kim B-S, Ullah S, Kim KH, Roh B-S, Ham J-H, Kim K-I (2020) an enhanced geographical routing protocol based on multi criteria decision making method in mobile ad-hoc networks. Ad Hoc Netw 103:102157
Derhami V, J-Majd V, N-Ahmadabadi M (2008) Fuzzy Sarsa learning and the proof of existence of its stationary points. Asian J Control 10(5):535–549
Wu T, Zhou P, Liu K, Yuan Y, Wang X, Huang H, Wu DO (2020) Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks. IEEE Trans Veh Technol 69(8):8243–8256
Rak J (2013) LLA: a new anypath routing scheme providing long path lifetime in VANETs. IEEE Commun Lett 18(2):281–284
Zemouri S, Djahel S, Murphy J (2018) An altruistic prediction-based congestion control for strict beaconing requirements in urban VANETs. IEEE Trans Syst Man Cybern Syst 49(12):2582–2597
NS-3 Homepage. [Online]. Available at https://www.nsnam.org. Accessed 25 Jul 2019
Krajzewicz D, Hertkorn G, Rossel C, Wagner P (2002) SUMO (Simulation of Urban MObility), an open-source traffic simulation. In: Proc 4th MESM, Sharjah, UAE, pp 183–187
Saleet H, Basir O, Langar R, Boutaba R (2009) Region-based location-service-management protocol for VANETs. IEEE Trans Veh Technol 59(2):917–931
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this manuscript.
Corresponding author
Ethics declarations
Ethics approval
The paper is original, and any other publishing house is not considering it for publication. The paper reflects the author's own research and analysis in a truthful and complete manner. All sources used are properly disclosed (correct citation).
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Conflicts of interest
There is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Naderi, M., Mahdaee, K. & Rahmani, P. Hierarchical traffic light-aware routing via fuzzy reinforcement learning in software-defined vehicular networks. Peer-to-Peer Netw. Appl. 16, 1174–1198 (2023). https://doi.org/10.1007/s12083-022-01424-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12083-022-01424-2