Skip to main content
Log in

Improvement of energy-efficient resources for cognitive internet of things using learning automata

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

The increasing demand for data collection from various Internet of Things (IoT) devices and limited energy of nodes in these networks led to the complex network conditions. Currently, the role of energy consumption for a large number of interconnected nodes in IoT is one of the research subjects. In many IoT applications, IoT devices are deployed in environments that are difficult to physically access. Therefore, an energy-efficient mechanism is important. This article proposes a new method for energy-efficient improvement based on machine learning from the point of view of cognitive networks, which is estimated using learning automata of network parameters. Then, transmission power of the network nodes to improve energy consumption is adjusted in a self-organized, self-aware and dynamic manner, and the behavior of the network nodes is adapted according to the current conditions of the network. One of the strengths of this method compared to the existing methods is that network conditions are estimated through parameters of Delay (D), Channel Status (S) and data rate, and this mechanism makes all decisions based on the network conditions. The results of the experiments show that examining energy-efficient from the perspective of cognitive network not only leads to the improvement of Quality of Service (QoS) parameters such as operational power and end to end delay in the network, but also an increase in the life of the network compared to other energy-efficient methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Naderi M, Mahdaee K, Rahmani P (2023) Hierarchical traffic light-aware routing via fuzzy reinforcement learning in software-defined vehicular networks. Peer-to-Peer Netw Appl 16(2):1174–1198. https://doi.org/10.1007/s12083-022-01424-2

    Article  Google Scholar 

  2. Naderi M, Zargari F, Sadatpour V, Ghanbari M (2017) A 3-parameter routing cost function for improving opportunistic routing performance in VANETs. Wirel Pers Commun 97(1):1–15. https://doi.org/10.1007/s11277-017-4496-5

    Article  Google Scholar 

  3. Naderi M, Zargari F, Ghanbari M (2019) Adaptive beacon broadcast in opportunistic routing for VANETs. Ad Hoc Netw 86:119–130. https://doi.org/10.1016/j.adhoc.2018.11.011

    Article  Google Scholar 

  4. Naderi M, Ghanbari M (2023) Adaptively prioritizing candidate forwarding set in opportunistic routing in VANETs. Ad Hoc Netw 140:103048. https://doi.org/10.1016/j.adhoc.2022.103048

    Article  Google Scholar 

  5. Naderi M, Chakareski J, Ghanbari M (2023) Hierarchical Q-learning-enabled neutrosophic AHP scheme in candidate relay set size adaption in vehicular networks. Comput Netw 235:109968. https://doi.org/10.1016/j.comnet.2023.109968

    Article  Google Scholar 

  6. Jiang S, Huang Z, Ji Y (2020) Adaptive UAV-assisted geographic routing with Q-learning in VANET. IEEE Commun Lett 25(4):1358–1362. https://doi.org/10.1109/LCOMM.2020.3048250

    Article  Google Scholar 

  7. Da Costa LA, Kunst R, Pignaton de Freitas E (2021) Q-FANET: improved Q-learning based routing protocol for FANETs. Comput Netw 198:108379. https://doi.org/10.1016/j.comnet.2021.108379

    Article  Google Scholar 

  8. Quy VK, Nam VH, Linh DM, Ngoc LA (2022) Routing algorithms for MANET-I networks: comprehensive survey. Wirel Pers Commun 125(4):3501–3535. https://doi.org/10.1007/s11277-022-09722-x

    Article  Google Scholar 

  9. Quy VK, Nam VH, Linh DM, Ban NT, Han ND (2021) A survey of QoS-aware routing protocols for the MANET-WSN convergence scenarios in IoT networks. Wirel Pers Commun 120(1):49–62. https://doi.org/10.1007/s11277-021-08433-z

    Article  Google Scholar 

  10. Mahamat M, Jaber G, Bouabdallah A (2023) Achieving efficient energy-aware security in IoT networks: a survey of recent solutions and research challenges. Wirel Netw 29(2):787–808. https://doi.org/10.1007/s11276-022-03170-y

    Article  Google Scholar 

  11. Aboubakar M, Kellil M, Roux P (2022) A review of IoT network management: current status and perspectives. J King Saud Univ Comput Inf Sci 34(7):4163–4176. https://doi.org/10.1016/j.jksuci.2021.03.006

    Article  Google Scholar 

  12. SaiRamesh L, Sabena S, Selvakumar K (2022) Energy efficient service selection from IoT based on QoS using HMM with KNN and XGBOOST. Wirel Pers Commun 124(4):3591–3602. https://doi.org/10.1007/s11277-022-09527-y

    Article  Google Scholar 

  13. Su Z, Feng W, Tang J, Chen Z, Fu Y, Zhao N, Wong KK (2022) Energy efficiency optimization for D2D communications underlaying UAV-assisted industrial IoT networks with SWIPT. IEEE Internet Things J 10(3):1990–2002. https://doi.org/10.1109/JIOT.2022.3142026

    Article  Google Scholar 

  14. Praveen KV, Prathap PJ (2021) Energy efficient congestion aware resource allocation and routing protocol for IoT network using hybrid optimization techniques. Wirel Pers Commun 117(2):1187–1207. https://doi.org/10.1007/s11277-020-07917-8

    Article  Google Scholar 

  15. Wu Q, Ding G, Xu Y, Feng S, Du Z, Wang J, Long K (2014) Cognitive internet of things: a new paradigm beyond connection. IEEE Internet Things J 1(2):129–143. https://doi.org/10.1109/JIOT.2014.2311513

    Article  Google Scholar 

  16. Arora S, Batra I, Malik A, Luhach AK, Alnumay WS, Chatterjee P (2023) Seed: secure and energy efficient data-collection method for IoT network. Multimed Tools Appl 82(2):3139–3153. https://doi.org/10.1007/s11042-022-13614-4

    Article  Google Scholar 

  17. Al-Ma’aitah M, Alwadain A, Saad A (2021) Transmission adaptive mode selection (TAMS) method for internet of things device energy management. Peer-to-Peer Netw Appl 14:2316–2326. https://doi.org/10.1007/s12083-020-00937-y

    Article  Google Scholar 

  18. Urosevic U (2022) New solutions for increasing energy efficiency in massive IoT. SIViP 16(7):1861–1868. https://doi.org/10.1007/s11760-022-02145-y

    Article  MathSciNet  Google Scholar 

  19. Liu X, Jia M, Zhou M, Wang B, Durrani TS (2021) Integrated cooperative spectrum sensing and access control for cognitive industrial Internet of Things. IEEE Internet Things J 10(3):1887–1896. https://doi.org/10.1109/JIOT.2021.3137408

    Article  Google Scholar 

  20. Bakshi M, Chowdhury C, Maulik U (2021) Energy-efficient cluster head selection algorithm for IoT using modified glow-worm swarm optimization. J Supercomput 77:6457–6475. https://doi.org/10.1007/s11227-020-03536-z

    Article  Google Scholar 

  21. Thenmozhi R, Sakthivel P, Kulothungan K (2022) Hybrid multi-objective-optimization algorithm for energy efficient priority-based QoS routing in IoT networks. Wirel Netw 1–18. https://doi.org/10.1007/s11276-021-02848-z

  22. Yang H, Zhong WD, Chen C, Alphones A, Xie X (2020) Deep-reinforcement-learning-based energy-efficient resource management for social and cognitive internet of things. IEEE Internet Things J 7(6):5677–5689. https://doi.org/10.1109/JIOT.2020.2980586

    Article  Google Scholar 

  23. Yang L, Li M, Si P, Yang R, Sun E, Zhang Y (2020) Energy-efficient resource allocation for blockchain-enabled industrial Internet of Things with deep reinforcement learning. IEEE Internet Things J 8(4):2318–2329. https://doi.org/10.1109/JIOT.2020.3030646

    Article  Google Scholar 

  24. Li Y, Sun Z, Han L, Mei N (2017) Fuzzy comprehensive evaluation method for energy management systems based on an internet of things. IEEE Access 5:21312–21322. https://doi.org/10.1109/ACCESS.2017.2728081

    Article  Google Scholar 

  25. Lei F, Zhao S, Sun M, Zhou Z (2019) Energy-efficient boundary detection of continuous objects in internet of things sensing networks. IEEE Access 8:92007–92018. https://doi.org/10.1109/ACCESS.2019.2955708

    Article  Google Scholar 

  26. Ashiquzzaman A, Lee H, Um TW, Kim J (2020) Energy-efficient IoT sensor calibration with deep reinforcement learning. IEEE Access 8:97045–97055. https://doi.org/10.1109/ACCESS.2020.2992853

    Article  Google Scholar 

  27. Liu Y, Liu A, Hu Y, Li Z, Choi YJ, Sekiya H, Li J (2016) FFSC: an energy efficiency communications approach for delay minimizing in internet of things. IEEE Access 4:3775–3793. https://doi.org/10.1109/ACCESS.2016.2588278

    Article  Google Scholar 

  28. Yang Z, Xu W, Pan Y, Pan C, Chen M (2017) Energy efficient resource allocation in machine-to-machine communications with multiple access and energy harvesting for IoT. IEEE Internet Things J 5(1):229–245. https://doi.org/10.1109/JIOT.2017.2778766

    Article  Google Scholar 

  29. Multanen J, Kulttala H, Tervo K, Jääskeläinen P (2020) Energy efficient low latency multi-issue cores for intelligent always-on IoT applications. J Signal Process Syst 92:1057–1073. https://doi.org/10.1007/s11265-020-01578-3

    Article  Google Scholar 

  30. Tomazzoli C, Scannapieco S, Cristani M (2020) Internet of things and artificial intelligence enable energy efficiency. J Ambient Intell Humaniz Comput 14(5):4933–4954. https://doi.org/10.1007/s12652-020-02151-3

    Article  Google Scholar 

  31. Yang H, Alphones A, Zhong WD, Chen C, Xie X (2019) Learning-based energy-efficient resource management by heterogeneous RF/VLC for ultra-reliable low-latency industrial IoT networks. IEEE Trans Industr Inf 16(8):5565–5576. https://doi.org/10.1109/TII.2019.2933867

    Article  Google Scholar 

  32. Raj Kumar NP, Bala GJ (2022) A cognitive knowledged energy-efficient path selection using centroid and ant-colony optimized hybrid protocol for WSN-assisted IoT. Wirel Pers Commun 124(3):1993–2028. https://doi.org/10.1007/s11277-021-09440-w

    Article  Google Scholar 

  33. Omidkar A, Khalili A, Nguyen HH, Shafiei H (2022) Reinforcement-learning-based resource allocation for energy-harvesting-aided D2D communications in IoT networks. IEEE Internet Things J 9(17):16521–16531. https://doi.org/10.1109/JIOT.2022.3151001

    Article  Google Scholar 

  34. Javadpour A, Wang G, Rezaei S (2020) Resource management in a peer-to-peer cloud network for IOT. Wirel Pers Commun 115:2471–2488. https://doi.org/10.1007/s11277-020-07691-7

    Article  Google Scholar 

  35. Javadpour A, Nafei A, Ja’fari F, Pinto P, Zhang W, Sangaiah AK (2022) An intelligent energy-efficient approach for managing IOE tasks in cloud platforms. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-022-04464-x

    Article  Google Scholar 

  36. Javadpour A, Sangaiah AK, Pinto P, Ja’fari F, Zhang W, Abadi AM, Ahmadi H (2022) An energy-optimized embedded load balancing using DVFS computing in cloud data centers. Comput Commun. https://doi.org/10.1016/j.comcom.2022.10.019

    Article  Google Scholar 

  37. Dattatraya KN, Rao KR (2022) Hybrid based cluster head selection for maximizing network lifetime and energy efficiency in WSN. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2019.04.003

    Article  Google Scholar 

  38. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press

    Google Scholar 

  39. Thathachar MA, Sastry PS (2003) Networks of learning automata: techniques for online stochastic optimization. Springer Science & Business Media

    Google Scholar 

  40. Rahmani P, Javadi HHS, Bakhshi H, Hosseinzadeh M (2018) TCLAB: a new topology control protocol in cognitive MANETs based on learning automata. J Netw Syst Manage 26:426–462. https://doi.org/10.1007/s10922-017-9422-3

    Article  Google Scholar 

  41. Rahmani P, Javadi HHS, Bakhshi H, Hosseinzadeh M (2018) Cog-MAC protocol: channel allocation in cognitive ad hoc networks based on the game of learning automata. Wirel Pers Commun 103:2285–2316. https://doi.org/10.1007/s11277-018-5911-2

    Article  Google Scholar 

  42. Rahmani P, Javadi HHS (2019) Topology control in MANETs using the Bayesian pursuit algorithm. Wirel Pers Commun 106:1089–1116. https://doi.org/10.1007/s11277-019-062054

    Article  Google Scholar 

  43. Rezvanian A, Moradabadi B, Ghavipour M, Khomami MMD, Meybodi MR (2019) Learning automata approach for social networks, vol 820. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Parisa Rahmani.

Ethics declarations

Ethics approval

The paper is original, and any other publishing house is not considering it for publication. The paper reflects the author's own research and analysis in a truthful and complete manner. All sources used are properly disclosed (correct citation).

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Competing interests

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Proofs of Convergence for CALA algorithm: We can write the CALA algorithm in the form.

  1. 1.

    \(Z\left(k+1\right)=Z\left(k\right)+\lambda G\left(Z\left(k\right),\xi \left(k\right)\right)\)

    where: \(Z(k) = {\left[\mu \left(K\right) \sigma \left(k\right)\right]}^{T}\) is the state at k, \(\xi \left(k\right)={\left[x\left(k\right) {\beta }_{x\left(k\right) }{\beta }_{\mu \left(k\right)}\right]}^{T}\) is random and the probability of its taking different values depends on Z(k), G symbolically represents the updating of two components of Z(k) in formulate updating \(\mu \left(k\right)\ and\ \sigma \left(k\right).\)

    The algorithm updates \(\mu \left(k\right) , \sigma \left(k\right)\) parameters of the action probability distribution at k.

  2. 2.

    \(\left(k+1\right)= \mu \left(k\right)+ \lambda {F}_{1}\left(\mu \left(K\right),\sigma \left(K\right),X\left(K\right),{\beta }_{X\left(K\right)},{\beta }_{\mu \left(K\right)}\right)\), \(\sigma \left(K+1\right)= \sigma \left(K\right)+ \lambda {F}_{2}\left(\mu \left(K\right),\sigma \left(K\right),X\left(K\right),{\beta }_{X\left(K\right)}, {\beta }_{\mu \left(K\right)}\right)-\lambda K\left[\sigma \left(k\right)-{\sigma }_{l}\right]\)

    where: \({F}_{1}\left(\mu ,\sigma ,X,{\beta }_{X},{\beta }_{\mu }\right)=\left(\frac{{\beta }_{X}-{\beta }_{\mu }}{\phi \left(\sigma \right)}\right)(\frac{X-\mu }{\phi \left(\sigma \right)})\), \({F}_{2}\left(\mu ,\sigma ,X,{\beta }_{X},{\beta }_{\mu }\right)=(\frac{{\beta }_{X}-{\beta }_{\mu }}{\phi \left(\sigma \right)}) [{\left(\frac{X-\mu }{\phi \left(\sigma \right)}\right)}^{2}-1]\).

    x(k) is action selected at k and \({\beta }_{X\left(K\right)}\), \({\beta }_{\mu \left(K\right)}\) are the reinforcements for the two actions x(k) and \(\mu (k)\) respectively, \({F}_{1}\ and\ {F}_{2}\) are functions with five variables.

    f(x) Denote the reward probability function.

  3. 3.

    \(f\left(x\right)=E\left[{\beta }_{x\left(k\right)}\left|x\left(k\right)=x\right)\right]\)

    where \({\beta }_{x(k)}\) is reinforcement and \(x\left(k\right)\) is action selected at k.

  4. 4.

    \(\mathrm{J}\left(\mu ,\sigma \right)=\int f\left(x\right) d N\left(\mu ,\sigma \right)=\int f\left(x\right) d N\left(\mu ,\sigma \right)\ dx\)

    where N (\(\mu,\ \sigma\)) = \(\frac{1}{\sigma \sqrt{2\pi }} {e}^{-\frac{{\left(x-\mu \right)}^{2}}{2{\sigma }^{2}}}\) is the normal density. (In general, d N (a, b) denote integration with respect to the normal distribution with mean a and variance \({b}^{2}\)). With a simple coordinate transformation, we can rewrite formula 4 as:

  5. 5.

    \(\mathrm{J}\left(\mu ,\sigma \right)=\int f\left(\sigma x+\mu \right)\ d\ N\left(\mathrm{0,1}\right)\), Assuming that \(\mu =0\), \(\sigma =1\)

    The g is a function of X, have two Components, \({g}_{1}, {g}_{2}\)

    We can equivalently denote is as a function of two variables: \(\mu , \sigma\), we can calculate \({g}_{1}, {g}_{2}\) as follows:

  6. 6.

    \({g}_{1}\left(\mu ,\sigma \right)\) = E[\({F}_{1}(\mu (K),\sigma (K),X(K),\beta \_X(K) ,\beta \_\mu (K)|\mu (k)=\mu , \sigma (k)= \sigma )\)] = \(\int \left\{E\left[\frac{{\beta }_{X}-{\beta }_{\mu }}{\phi \left(\sigma \right)}\right]|x\left(k\right)=x, \mu \left(k\right)=\mu , \sigma \left(k\right)=\sigma \right\}\left(\frac{X-\mu }{\phi \left(\sigma \right)}\right)\) d N(\(\mu ,\phi \left(\sigma \right)\)) = \(\int [(\frac{f\left(x\right)-f\left(\mu \right)}{\phi \left(\sigma \right)}]\))(\(\frac{X-\mu }{\phi \left(\sigma \right)}\)) d N(\(\mu ,\phi (\sigma\)) = \(\int \frac{f\left(x\right)}{\phi \left(\sigma \right)}\) (\(\frac{X-\mu }{\phi \left(\sigma \right)}\)) d N(\(\mu ,\phi (\sigma\))

    The last step above follows because \(f(\mu )\) is independent of x and hence comes out of the integral and the rest of integral in the term is zero, with respect \(\mu\), we now get.

  7. 7.

    \({g}_{1}\left(\mu ,\sigma \right)=\frac{\partial J}{\partial \mu }\left(\mu ,\phi \left(\sigma \right)\right)\)

    where \(\frac{\partial J}{\partial \mu}\) is partial derivative of the ratio J function and \(\mu\) and \(\phi \left(\sigma \right) ={\sigma }_{l}\hspace{0.33em}for\hspace{0.33em}\sigma \le {\sigma }_{l},\ \sigma \hspace{0.33em}for\hspace{0.33em}\sigma \succ {\sigma }_{l}\succ 0\)

    In a similar fashion, we can show that

  8. 8.

    \({g}_{2}\left(\mu ,\sigma \right)= E\left[{F}_{2}\left(\mu \left(K\right),\sigma \left(K\right),X\left(K\right),{\beta }_{X\left(K\right)}, {\beta }_{\mu \left(K\right)}\right)-K\left(\sigma \left(k\right)-{\sigma }_{l}\right)\left|\mu \left(k\right)= \mu , \sigma \left(k\right)= \sigma \right.\right]\) = \(\frac{\partial J}{\partial \sigma }\) (\(\mu ,\phi \left(\sigma \right)\)) – K[\(\sigma -{\sigma }_{l}\)]

    where \(\frac{\partial J}{\partial \sigma}\) is partial derivative of the ratio J function and \(\sigma ,\) K is constant. Having calculated the g function, the approximating ODE would be \(\dot{Z}=g\left(Z\right).\) Since the state here has two components, namely \(\mu\ and\ \sigma\) using formulas 7 and 8 the approximating ODE for CALA algorithm is:

  9. 9.

    \(\frac{d\mu }{dt} = \frac{\partial J}{\partial \mu }\) (\(\mu ,\phi \left(\sigma \right)\))

  10. 10.

    \(\frac{d\sigma }{dt} = \frac{\partial J}{\partial \sigma }\) (\(\mu ,\phi \left(\sigma \right)\)) – K [\(\sigma -{\sigma }_{l}\)]

    This completes calculation of the approximating ODE for CALA algorithm to prove that this approximating ODE, all we need to do is to verify assumptions A1 to A4.

Assumptions

We make following assumptions on the system.

  1. A1.

    \(\left\{({X}_{k}^{b} , {\xi }_{k}^{b} , k\ge 1)\right\}\) is a Markov process.

  2. A2.

    For any appropriate Borel set B. 

    \(\mathrm{Prob}\left[{\xi }_{k}^{b} \in B \left|{X}_{k}^{b} , {\xi }_{k-1}^{ b} \right.\right]=Prob\left[{\xi }_{k}^{b} \in B \left|{X}_{k}^{b}\right.\right].\)

    That is, conditioned on \({X}_{k}^{b} , {\xi }_{k}^{b}\) is independent of\({\xi }_{k-1}^{ b}\).

  3. A3.

    Define g: \({R}^{N} \to {R}^{N}\) by g(x) = E [G (\({X}_{k},{\xi }_{k}\))\(\left|{X}_{k}=x\right.\)]

    We assume that g(.) is independent of k and that is globally Lipschutz.

  4. A4.

    Define \({\theta }_{k}^{b}\) = G (\({X}_{k}^{b}\),\({\xi }_{k}^{b}\)) – g (\({X}_{k}^{b}\))

    We assume that E \({\Vert {\theta }_{k}^{b}\Vert }^{2}<M < \infty\), for some M and \(\forall k.\)

    From the structure of the Algorithm it is immediately obvious that assumptions A1 and A2 are satisfied. To satisfy A3 and A4, we make the following additional assumptions on the unknown reward function, f(.).

  5. B1.

    F(.) is a bounded and is continuously differentiable, Let L denote the bound of F(.).

  6. B2.

    The derivative of f, namely, \({f}^{\prime}\left(.\right)\), is globally Lipschutz, that is, \(\left|{f}^{\prime}\left(x\right)- {f}^{\prime}\left(y\right)\right| \le {K}_{0}\Vert x-y\Vert\)

  7. B3.

    Define zero mean random variables \({\tau }_{x}= {\beta }_{x}-f\left(x\right)\). We assume that Var (\({\tau }_{x}\))\(\le {\sigma }_{M}^{2}\) for some \({\sigma }_{M}<\infty\) and that E [\({\tau }_{x}, {\tau }_{y}\left|x,y\right.\)] = 0 for x \(\ne y.\)

    Under the assumptions B1—B3, we verify A3 – A4. under the integral, we get

  8. 11.

    \(\frac{\partial J}{\partial \mu }\left(\mu , \sigma \right) = \int {f}^{\prime}\left(\sigma x+\mu \right)x\ d\ N\ \left(\mathrm{0,1}\right)\)

  9. 12.

    \(\frac{\partial J}{\partial \sigma }\left(\mu , \sigma \right)= \int {f}^{\prime}\left(\sigma x+\mu \right)x\ d\ N\ \left(\mathrm{0,1}\right)\)  

    Now we have:

  10. 13.

    \(\left|{g}_{1}\left({\mu }_{1},{\sigma }_{1}\right)- {g}_{1}\left({\mu }_{2},{\sigma }_{2}\right)\right| = \left|\frac{\partial J}{\partial \mu }\left({\mu }_{1},{\sigma }_{1}\right)-\frac{\partial J}{\partial \mu }\left({\mu }_{2},{\sigma }_{2}\right)\right| \le \int \left|{f}^{\mathrm{^{\prime}}}\left({\left(\sigma \right)}_{1}x+{\mu }_{1}\right)- {f}^{\mathrm{^{\prime}}}\left({\sigma }_{2}x + {\mu }_{2} \right)\right|\) d N (0,1) \(\le {K}_{0} \int \left|{\sigma }_{1}x + {\mu }_{1}- {\sigma }_{2}x- {\mu }_{2} \right| d N \left(\mathrm{0,1}\right) \le {K}_{0}\left|{\mu }_{1}- {\mu }_{2}\right| \int d N \left(\mathrm{0,1}\right)+ { K}_{0}\left|{\sigma }_{1}- {\sigma }_{2}\right| \int \left|x\right| d N \left(\mathrm{0,1}\right) {K}_{1} \Vert \left({\mu }_{1},{\sigma }_{1}\right)-\left({\mu }_{2},{\sigma }_{2}\right)\Vert\)

    where \({K}_{1}\) depend on \({K}_{0}\) and first absolute moment of standard normal distribution. Hence can show that

  11. 14.

    \(\left|{g}_{2}\left({\mu }_{1},{\sigma }_{1}\right)- {g}_{2}\left({\mu }_{2},{\sigma }_{2}\right)\right| \le {{K}^{\mathrm{^{\prime}}}}_{2} \Vert \left({\mu }_{1},{\sigma }_{1}\right)- \left({\mu }_{2},{\sigma }_{2}\right)\Vert\) + K \(\left|{\sigma }_{1}- {\sigma }_{2}\right| \le {K}_{2 }\Vert \left({\mu }_{1},{\sigma }_{1}\right)-\left({\mu }_{2},{\sigma }_{2}\right)\Vert\)

    The proves that g is globally Lipschitz and thus verify A3, we note here that if instead of assumption B2. We had assumed that \({f}^{\prime}\) in Lipschitz on compact sets then the above proves that g is Lipschitz on compact sets.

  12. 15.

    E [\({G}_{1}{\left(X,\xi \right)}^{2}\left|X\right.\)] = E [\({\left(\frac{{\beta }_{X}-{\beta }_{\mu }}{\phi \left(\sigma \right)}.\frac{X-\mu }{\phi \left(\sigma \right)}\right)}^{2}\left|\mu ,\sigma \right.\)] = E [E [\({\left(\frac{{\beta }_{X}-{\beta }_{\mu }}{\phi \left(\sigma \right)}\right)}^{2} {\left(\frac{X-\mu }{\phi \left(\sigma \right)}\right)}^{2}\left|x,\mu ,\sigma \right.\)]\(\left|\mu ,\sigma \right.\)] = E [\({\left(\frac{X-\mu }{\phi \left(\sigma \right)}\right)}^{2}\) E[\({\left(\frac{{\beta }_{X}-{\beta }_{\mu }}{\phi \left(\sigma \right)}\right)}^{2} \left|x,\mu ,\sigma \right.\)] \(\left|\mu ,\sigma \right.\)] \(\le\) E [\({\left(\frac{X-\mu }{\phi \left(\sigma \right)}\right)}^{2} \frac{1}{{\phi }^{2}\left(\sigma \right)}\) [\({\left(f\left(x\right)-f\left(\mu \right)\right)}^{2}\) + 2 \({\left({\sigma }_{M}\right)}^{2}\)] \(\left|\mu ,\sigma \right.\)] = \(\int {\left(\frac{X-\mu }{\phi \left(\sigma \right)}\right)}^{2}\frac{1}{{\phi }^{2}\left(\sigma \right)}\) [\({\left(f\left(x\right)-f\left(\mu \right)\right)}^{2}\) + 2 \({\left({\sigma }_{M}\right)}^{2}\)] d N(\(\mu ,\phi \left(\sigma \right)\)) \(\le \frac{4{L}^{2}+2{{\sigma }^{2}}_{M}}{{\phi }^{2}\left(\sigma \right)} \int {y}^{2} d N\left(\mathrm{0,1}\right)\)

    This shows that E [\({G}_{1}^{2}\) (X,\(\xi\))\(\left|X\right.\)] \(\le {K}_{4}\) for some constant \({K}_{4}\) which is independent of X, now we have, by definition of J (.,.),

  13. 16.

    \(\left|\frac{\partial J}{\partial \mu } \left(\mu ,\sigma \right)\right|\) = \(\left|\frac{\partial }{\partial \mu } \int f\left(x\right) d N\left(\mu ,\phi \left(\sigma \right)\right)\right|\)= \(\left|\int f\left(x\right)\frac{x- \mu }{{\phi }^{2}\left(\sigma \right)} d N\left(\mu ,\phi \left(\sigma \right)\right)\right| \le\) L \(\int \left|x\right| d N\left(\mathrm{0,1}\right)\).

    Which shows \({g}_{1}\) is also bounded. assumption A4 is satisfied, since all assumptions are satisfied, we can conclude that is the approximating ODE for the CALA algorithm. The main features of the algorithm that result in the specific from of this ODE are as follows.

  14. 17.

    J (\(\mu ,\sigma\)) = \(\oint f\left(x\right)d\ N\left(\mu ,\sigma \right)\) = \(\oint \frac{1}{\sigma \sqrt{2\pi }} {e}^{-\frac{{\left(x-\mu \right)}^{2}}{2{\sigma }^{2}}}\)

    where \(N\left(\mu ,\sigma \right)\) denotes the gaussian density Function with mean \(\mu\) and standard deviation \(\sigma\). Let

  15. 18.

    \({F}_{1} \left(\mu , \sigma ,x,\beta ,{\beta }^{\prime}\right)= \frac{(\beta - {\beta }^{\prime})}{\phi (\sigma )}\cdot \frac{(x - \mu )}{\phi (\sigma )}\)

  16. 19.

    \({F}_{2}\left(\mu , \sigma ,x,\beta ,{\beta }^{\prime}\right) = \frac{(\beta - {\beta }^{\prime})}{\phi (\sigma )}\left[{(\frac{(x - \mu )}{\phi (\sigma )})}^{2}-1\right]\)

    Where that these functions capture the prominent terms in the learning algorithm by formula 24 paper.

    We have

  17. 20.

    E [\({F}_{1}\left(\mu \left(K\right),\sigma \left(K\right),x\left(k\right),{\beta }_{x\left(k\right)},{\beta }_{\mu \left(k\right)}\right) \left|\mu \left(k\right)\right.= \mu , \sigma \left(k\right)= \sigma\)] = \(\frac{\partial J}{\partial \mu }\left(\mu ,\phi \left(\sigma \right)\right)\)

  18. 21.

    E [\({F}_{2}\left(\mu \left(K\right),\sigma \left(K\right),x\left(k\right),{\beta }_{x\left(k\right)},{\beta }_{\mu \left(k\right)}\right) \left|\mu \left(k\right)= \mu , \sigma \left(k\right)= \sigma \right.\)] = \(\frac{\partial J}{\partial \sigma }\left(\mu ,\phi \left(\sigma \right)\right)\)

    The above equations show that expectation of the changes \(\mu \left(K\right)\ and\ \sigma \left(K\right)\) conditioned on their current values, is proportional to the gradient of the average reinforcement, J. the ODE associated with the CALA algorithm is given by

  19. 22.

    \(\frac{d\mu }{dt} = \frac{\partial J}{\partial \mu }\) (\(\mu ,\phi \left(\sigma \right)\)), \(\frac{d\sigma }{dt} = \frac{\partial J}{\partial \sigma }\) (\(\mu ,\phi \left(\sigma \right)\)) – K [\(\sigma -{\sigma }_{l}\)]

  20. 23.

    Given any \(\Delta\ >0\ and\ any\ Compact\ Set\ \widetilde{K} \in R\), There exists a \({\sigma }^{*} >0\) such that \({SUP}_{\mu \in \widetilde{K}}\left|\frac{\partial J}{\partial \mu } \left(\mu ,\sigma \right)- {f}^{\prime}(\mu )\right| < \Delta\), for \(0 <\sigma < {\sigma }^{*}\), This result shows that the Convergence of \(\frac{\partial J}{\partial \mu }\) to \({f}^{\prime}\left(\mu \right)= \frac{df(u)}{du}\) as \(\sigma \to\) 0 is uniform over all \(\mu \epsilon \widetilde{K}\) for any Compact Set \(\widetilde{K}\).

  21. 24.

    \(\frac{\partial J}{\partial \sigma }(\mu ,\phi \left(\sigma \right)-\mathrm{K}\left(\sigma - {\sigma }_{L}\right)=0\).

    Putting all this together, we can conclude that by choosing a small value of \({\sigma }_{l} >0,\) a small step size \(\lambda >0 ,\) and sufficiently high K\(>0\), we can ensure that the iterates \(\mu \left(K\right)\) of the CALA algorithm will be close to maximum of the function f with high probability after a long [39].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, P., Arefi, M. Improvement of energy-efficient resources for cognitive internet of things using learning automata. Peer-to-Peer Netw. Appl. 17, 297–320 (2024). https://doi.org/10.1007/s12083-023-01565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-023-01565-y

Keywords

Navigation