Skip to main content
Log in

A key leakage resistant linearly homomorphic signature scheme and its application

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A linearly homomorphic signature (LHS) enables linear computation on signed data and has been investigated in many contexts, such as network coding to resist pollution attacks and computation on outsourced data. Traditional LHS security relies entirely on the secrecy of the signing keys. The exposure of signing keys necessitates updating all generated signatures. However, with the increasing use of relatively insecure mobile devices in network coding and data outsourcing systems, key exposure has become more prevalent. To mitigate the hazard of key exposure in the LHS setting, we integrate key update mechanisms into the LHS by presenting a forward-secure linearly homomorphic signature (FSLHS). Specifically, we formalize the definition and security notions for the FSLHS scheme and present a concrete implementation. We prove our scheme to be forward secure against adaptively chosen message attacks, assuming the hardness of the CDH problem. Compared to previous works, our performance analysis shows that all parameters of our scheme exhibit logarithmic complexity with respect to the total number of time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article.

References

  1. Jin JQ, Ho T, Viswanathan H (2006) Comparison of network coding and nonnetwork coding schemes for multi-hop wireless networks. In: Proc. IEEE international symposium on information theory, pp 197-201

  2. Wu Y, Chou P, Kung SY (2005) Minimum-energy multicast in mobile ad hoc networks using network coding. IEEE Trans Commun 53(11):1906–1918

    Article  MATH  Google Scholar 

  3. Chen WB, Lei H, Qi K (2016) Lattice-based linearly homomorphic signatures in the standard model. Theor Comput Sci 634(27):47–54

    Article  MathSciNet  MATH  Google Scholar 

  4. Li SYR, Yeung R, Cai N (2003) Linear network coding. IEEE Trans Inf Theory 49(2):371–381

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu X, Huang J, Wu Y, Zong G (2019) A privacy-preserving signature scheme for network coding. IEEE Access 7:109739–109750

    Article  MATH  Google Scholar 

  6. Hu X, Zheng S, Gong J, et al (9) Enabling Linearly Homomorphic Signatures in Network Coding-based Named Data Networking. In: Proc. CFI 2019, pp 1–4. https://doi.org/10.1145/3341188.3341191

  7. Charles D, Jain K, Lauter K (2006) Signatures for network coding. In: Proc. 40th Annu Conf Inf Sci Syst Mar, IEEE, Princeton, NJ, pp 857–863

  8. Yu Z, Wei Y, Ramkumar B, Guan Y (2008) An efficient signature-based scheme for securing network coding against pollution attacks. In: Proc. INFOCOM, IEEE, Phoenix, AZ, pp 1409–1417

  9. Zhang P, Jiang Y, Lin C, Yao H, Wasef A et al (2011) Padding for orthogonality: efficient subspace authentication for network coding. in Proc. IEEE INFOCOM, Shanghai, pp 1026–1034

  10. Boneh D, Freeman D, Katz J, Waters J (2009) Signing a Linear Subspace: Signature Schemes for Network Coding. In: Proc. PKC 2009, LNCS, Springer, Berlin, Heidelberg, vol 5443 pp 68–87

  11. Zhang Y, Jiang Y, Li B, Zhang M (2017) An efficient identity-based homomorphic signature scheme for network coding. In: Proc. EIDWT 2017, LNCS, Springer, Cham, vol 6 pp 524–531

  12. Sadrhaghighi S, Khorsandi S (2016) An identity-based digital signature scheme to detect pollution attacks in intra-session network coding. In: Proc. ISCISC 2016, Tehran, Iran, pp 7–12

  13. Lin Q, Yan H, Huang Z, Chen W, Shen J, Tang Y (2018) An ID-based linearly homomorphic signature scheme and its application in blockchain. IEEE Access 6:20632–20640

    Article  Google Scholar 

  14. Chang J, Ma H, Zhang A, Xu M, Xue R (2019) RKA security of identity-based homomorphic signature scheme. IEEE Access 6:50858–50868

    Article  Google Scholar 

  15. Li Y, Zhang F, Liu X (2020) Secure data delivery with identity-based linearly homomorphic network coding signature scheme in IoT. IEEE Trans Serv Comput 15(4):2202–2212

    Article  MATH  Google Scholar 

  16. Yu H, Shi J (2022) Certificateless homomorphism network coding signature scheme. IEEE Sens J 22(13):13707–13715

    Article  MATH  Google Scholar 

  17. Li Y, Zhang F, Sun Y (2021) Lightweight certificateless linearly homomorphic network coding signature scheme for electronic health system. IET Inf Secur 15(1):131–146

    Article  MATH  Google Scholar 

  18. Wu B, Wang C, Yao H (2021) A certificateless linearly homomorphic signature scheme for network coding and its application in the IoT. Peer-to-Peer Netw Appl 14:852–872

    Article  MATH  Google Scholar 

  19. Schabhüser L, Butin D, Buchmann J (2019) Context hiding multi-key linearly homomorphic authenticators. In: Proc. CT-RSA 2019, LNCS, Springer, Cham, vol 11405 pp 493–513

  20. Schabhuser L, Buchmann J, Struck P (2017) A linearly homomorphic signature scheme from weaker assumption. In: Proc. IMACC2017, LNCS, Springer, Cham, vol 10655 pp 261–279

  21. Li T, Chen W, Tang T, Yan H (2018) A homomorphic network coding signature scheme for multiple sources and its application in IoT. Secur Commun Netwo 2018:1–6

    MATH  Google Scholar 

  22. Lai RW, Tai RK, Wong HW, Chow SS (2018) Multi-key homomorphic signatures unforgeable under insider corruption. In: Proc. ASIACRYPT 2018, LNCS, Springer, Cham, vol 11273 pp 465–492

  23. Cai J, Jiang H, Wang H et al (2020) Lattice-based linearly homomorphic signature scheme over \( F_2 \). Secur Commun Netw 2020:1–7

    Article  MATH  Google Scholar 

  24. Gu Y, Shen L, Zhang F et al (2022) Provably secure linearly homomorphic aggregate signature scheme for electronic healthcare system. Mathematics 10(15):2588

    Article  MATH  Google Scholar 

  25. Wang C, Wu B (2023) A linear homomorphic proxy signature scheme based on blockchain for internet of things. Comput Model Eng Sci. https://doi.org/10.32604/cmes.2023.026153.

  26. Li Y, Yao H, Chen M, Jaggi S et al (2010) RIPPLE authentication for network coding. In: Proc. IEEE INFOCOM, San Diego, CA, USA, pp 1–9

  27. Esfahani A, Mantas G, Rodriguez J (2016) An efficient null space-based homomorphic MAC scheme against tag pollution attacks in RLNC. IEEE Commun Lett 20(5):918–921

    Article  Google Scholar 

  28. Esfahani A, Yang D, Mantas G et al (2015) Dual homomorphic message authentication code scheme for network coding enable wireless sensor networks. Int J Distrib Sens Netw 11(7):510251

    Article  Google Scholar 

  29. Wu X, Xu Y, Yuen C, Xiang L (2014) A tag encoding scheme against pollution attack to linear network coding. IEEE Trans Parallel Distrib Syst 25(1):33–42

    Article  MATH  Google Scholar 

  30. Kehdi K, Li B (2009) Null Keys: limiting malicious attacks via null space properties of network coding. In: Proc. IEEE INFOCOM 2009, Rio de Janeiro, Brazil, pp 1224–1232

  31. Cheng C, Lee J, Jiang T, Takagi T (2016) Security analysis and improvements on two homomorphic authentication schemes for network coding. IEEE Trans Inf Forensics Secur 11(5):993–1002

    Article  MATH  Google Scholar 

  32. Boneh D, Freema D (2011) Homomorphic signatures for polynomial functions. In: Proc. AEUROCRYPT 2011, LNCS, Springer, Berlin, Heidelberg, vol 6632 pp 149–168

  33. Catalano D, Fiore D, Warinschi B (2014) Homomorphic signatures with efficient verification for polynomial functions. In: Proc. CRYPTO 2014, LNCS, Springer, Berlin, Heidelberg, vol 8616 pp 371–389

  34. Gorbunov S, Vaikuntanathan V, Wichs D (2015) Leveled fully homomorphic signatures from standard lattices. In: Proc. STOC 2015, LNCS, Springer, Cham vol 9290 pp 469–477

  35. Wang C, Wu B, Yao H (2020) Leveled adaptively strong-unforgeable identity-based fully homomorphic signatures. IEEE Access 8:119431–119447

    Article  MATH  Google Scholar 

  36. Fiore D, Pagnin E (2018) Matrioska: A Compiler for Multi-Key Homomorphic Signatures. In: Proc. SCN 2018, LNCS, Springer, Cham, vol 11035 pp.43–62

  37. Fiore D, Mitrokotsa A, Nizzardo L, et al (2016) Multi-key homomorphic authenticators. In Proc. ASIACRYPT 2016, LNCS, Springer, Berlin, Heidelberg, vol 10032 pp 1–41

  38. Samarin SD, Fiore D, Venturi D et al (2021) A compiler for multi-key homomorphic signatures for Turing machines. Theor Comput Sci 889:145–170

    Article  MathSciNet  MATH  Google Scholar 

  39. Li S, Liang B, Mitrokotsa A et al (2021) Homomorphic signcryption with public plaintext-result checkability. IET Inf Secur 15(5):333–350

  40. Wang Y, Wang M (2020) A new fully homomorphic signatures from standard lattices. In: Proc. WASA 2020, Qingdao, China, Springer, pp 494–506

  41. Li R, Wang F, Zhang R, et al (2022) NTRU-Based Fully Homomorphic Signature. Secur Commun Netw 2022

  42. Li S, Wang X, Xue R (2022) Toward both privacy and efficiency of homomorphic MACs for polynomial functions and its applications. Comput J 65(4):1020–1028

    Article  MathSciNet  MATH  Google Scholar 

  43. Anderson R (1997) Two remarks on public-key cryptology. In: Proc. ACM-CCS 1997. http://wwwcl.cam.ac.uk/users/rja14

  44. Bellare M, Miner SK (1999) A forward-secure digital signature scheme. In: Proc. CRYPTO 1999, Santa Barbara, California, USA, pp 431–448

  45. Fiat A, Shamir A (1986) How to prove yourself: practical solutions to identification and signature problems. In: Proc. CRYPTO 1986, LNCS vol. 263, Santa Barbara, California, USA, pp 186–194

  46. Abdalla M, Reyzin L (2000) A new forward-secure digital signature scheme. In: Proc. ASIACRYPT 2000, Springer, Kyoto, pp 116–129

  47. Itkis G, Reyzin L (2001) Forward-secure signatures with optimal signing and verifying. In: Proc. CRYPTO 2001, Springer, Santa Barbara, CA, pp 332–354

  48. Kozlov A, Reyzin L (2003) Forward-secure signatures with fast key update. In: Proc. SCN 2003, Springer, Berlin, Heidelberg, pp 241–256

  49. Malkin T, Micciancio D, Miner S (2002) Efficient generic forward-secure signatures with an unbounded number of time periods. In: Proc. EUROCRYPT 2002, Springer, Amsterdam, pp 400–417

  50. Yu J, Kong F, Cheng X, Hao R, Li G (2008) Construction of yet another forward secure signature scheme using bilinear maps. In: Proc. ProvSec 2008, LNCS, Springer, Berlin, Heidelberg, vol 5324 pp 83-97

  51. Canetti R, Halevi S, Katz J (2003) A forward-secure public-key encryption scheme. In: Proc. EUROCRYPT 2003, LNCS, Warsaw, Poland, Springer, Berlin, Heidelberg, vol 2656 pp 255-271

  52. Hu F, Wu CH, Irwin JD (2003) A new forward secure signature scheme using bilinear maps. Cryptology ePrint Archive, Report 2003/188. http://eprint.iacr.org/2003/188

  53. Kang BG, Park JH, Hahn SG (2004) A new forward secure signature scheme. Cryptology ePrint Archive, Report 2004/183. http://eprint.iacr.org/2004/183

  54. Liu Y, Yin X, Qiu L (2008) ID-based forward-secure signature scheme from the bilinear pairings. In: Proc. ISECS 2008, Guangzhou, China, pp 179–183

  55. Yu J, Hao R, Kong F et al (2011) Forward-secure identity-based signature: security notions and construction. Inf Sci 181(3):648–660

    Article  MathSciNet  MATH  Google Scholar 

  56. Yu J, Xia H, Zhao H, Hao R et al (2016) Forward secure identity-based signature scheme in untrusted update environments. Wirel Person Commun 86(3):1467–1491

    Article  MATH  Google Scholar 

  57. Wei J, Liu W, Hu X (2017) Forward-secure identity-based signature with efficient revocation. Int J Comput Math 94(7):1390–1411

    Article  MathSciNet  MATH  Google Scholar 

  58. Oh H, Kim J, Shin JS (2018) Forward-Secure ID based Digital Signature Scheme with Forward-Secure Private Key Generator. Inf Sci 454-455

  59. Li J, Teng H, Huang X et al (2015) A forward-secure certificate-based signature scheme. Comput J 58(4):853–866

    Article  MATH  Google Scholar 

  60. Lu Y, Li J (2019) A forward-secure certificate-based signature scheme with enhanced security in the standard model. KSII Trans Int Inf Syst 13(3):1502–1522

  61. Li Z, Wang D (2019) Achieving one-round password-based authenticated key exchange over lattices. IEEE Trans Serv Comput 15(1):308–321

  62. Li Z, Wang D, Morais E (2020) Quantum-safe round-optimal password authentication for mobile devices. IEEE Trans Dependable Secure Comput 19(3):1885–1899

Download references

Acknowledgements

The authors express their gratitude to the reviewers and editors for their invaluable assistance. This preprint has been submitted and is currently undergoing the prescreening process.

Funding

This research was supported by the Gansu Provincial Department of Education through the Innovation Fund Project for University Teachers (2023A-041) and by the Young Scholars Science Foundation of Lanzhou Jiaotong University (2022011), and by the Natural Science Foundation of Gansu Province(25JRRA156).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Bin Wu, Ning Shi. Formal analysis: Bin Wu, Yahong Li. Methodology: Bin Wu, Yahong Li. Resources: Bin Wu, Caifen Wang, Kaijun Wu. Software: Bin Wu, Kaijun Wu. Writing-original draft: Bin Wu, Caifen Wang. Writing-review & editing: Bin Wu, Ning Shi, Yahong Li.

Corresponding author

Correspondence to Bin Wu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection: 1- Track on Networking and Applications

Guest Editor: Vojislav B. Misic

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Shi, N., Li, Y. et al. A key leakage resistant linearly homomorphic signature scheme and its application. Peer-to-Peer Netw. Appl. 18, 101 (2025). https://doi.org/10.1007/s12083-025-01917-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12083-025-01917-w

Keywords