Skip to main content
Log in

Factorization of determinants over finite fields and application in stream ciphers

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Binary sequences being generated by nonlinearly filtering maximal length sequences with period 2n − 1 are studied in this paper. In particular, we focus on two well-known classes of nonlinear filters, namely the equidistant and normal filters, and provide new improved lower bounds on the linear complexity of the generated keystreams. In order to achieve this, properties of certain determinants over finite fields, i.e. generalized Vandermonde and linearized determinants, are first analyzed in terms of their factorization. The value of the derived methodology is demonstrated by the simplification that occurs in the generalized version of the root presence test, which has been commonly used to obtain lower bounds on the linear complexity. Moreover, it is shown how these results can be applied to reason about the properties of more complex nonlinear filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill Inc., New York (1968)

    MATH  Google Scholar 

  2. Bernasconi, J., Günther, C.G.: Analysis of a nonlinear feedforward logic for binary sequence generators. In: Proc. Advances in Cryptology—Eurocrypt ’85. Lecture Notes in Computer Science, vol. 219, pp. 161–166. Springer, Berlin (1985)

    Google Scholar 

  3. Blaum, M., Bruck, J., Vardy, A.: MDS array codes with independent parity symbols. IEEE Trans. Inf. Theory 42, 529–542 (1996)

    Article  MATH  Google Scholar 

  4. Caballero-Gil, P.: Regular cosets and upper bounds on the linear complexity of certain sequences. In: Proc. Sequences and their Applications. Discrete Mathematics and Theoretical Computer Science, pp. 242–256. Springer, Berlin (1999)

    Google Scholar 

  5. Caballero-Gil, P., Fúster-Sabater, A.: A wide family of nonlinear filter functions with large linear span. Inform. Sci. 164, 197–207 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. El-Mikkawy, M.: Explicit inverse of a generalized Vandermonde matrix. Appl. Math. Comput. 146, 643–651 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. García-Villalba, L.J., Fúster-Sabater, A.: On the linear complexity of the sequences generated by nonlinear filterings. Inf. Process. Lett. 76, 67–73 (2000)

    Article  Google Scholar 

  8. Gohberg, I.: Spectral analysis of families of operator polynomials and a generalized Vandermonde matrix II: the infinite dimensional case. J. Funct. Anal. 30, 358–389 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Golić, J.D.: On the linear complexity of functions of periodic GF(q) sequences. IEEE Trans. Inf. Theory 35, 69–75 (1989)

    Article  MATH  Google Scholar 

  10. Golomb, S.W.: Shift Register Sequences. Holden-Day Inc., San Francisco, CA (1967)

    MATH  Google Scholar 

  11. Göttfert, R., Niederreiter, H.: On the linear complexity of products of shift–register sequences. In: Proc. Advances in Cryptology – Eurocrypt ’93. Lecture Notes in Computer Science, vol. 765, pp. 151–158. Springer, Berlin (1994)

    Google Scholar 

  12. Göttfert, R., Niederreiter, H.: On the minimal polynomial of the product of linear recurring sequences. Finite Fields Appl. 1, 204–218 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Groth, E.J.: Generation of binary sequences with controllable complexity. IEEE Trans. Inf. Theory 17, 288–296 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  14. Herlestam, T.: On functions of linear shift register sequences. In: Proc. Advances in Cryptology—Eurocrypt ’85. Lecture Notes in Computer Science, vol. 219, pp. 119–129. Springer, Berlin (1985)

    Google Scholar 

  15. Kalouptsidis, N.: Signal Processing Systems. Telecommunications and Signal Processing Series. Wiley, New York (1996)

    Google Scholar 

  16. Key, E.L.: An analysis of the structure and complexity of nonlinear binary sequence generators. IEEE Trans. Inf. Theory 22, 732–736 (1976)

    Article  MATH  Google Scholar 

  17. Kolokotronis, N., Kalouptsidis, N.: On the linear complexity of nonlinearly filtered PN-sequences. IEEE Trans. Inf. Theory 49, 3047–3059 (2003)

    Article  MathSciNet  Google Scholar 

  18. Lam, C., Gong, G.: A lower bound for the linear span of filtering sequences. In: Proc. State of the Art of Stream Ciphers—SASC, pp. 220–233 (2004)

  19. Lidl, R., Niederreiter, H.: Finite fields, 2nd ed. In: Encyclop. Math. Its Applic., vol. 20. Cambridge Univ. Press, Cambridge (1996)

    Google Scholar 

  20. Limniotis, K., Kolokotronis, N., Kalouptsidis, N.: New results on the linear complexity of binary sequences. In: Proc. IEEE Int’l Sympos. Inform. Theory, pp. 2003–2007 (2006)

  21. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd ed. Oxford Univ. Press, Oxford (1995)

    MATH  Google Scholar 

  22. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  23. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15, 122–127 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  24. Massey, J.L., Serconek, S.: A Fourier transform approach to the linear complexity of nonlinearly filtered sequences. In: Proc. Advances in Cryptology—Crypto ’94. Lecture Notes in Computer Science, vol. 839, pp. 332–340. Springer, Berlin (1994)

    Google Scholar 

  25. Massey, J.L., Serconek, S.: Linear complexity of periodic sequences: a general theory. In: Proc. Advances in Cryptology—Crypto ’96. Lecture Notes in Computer Science, vol. 1109, pp. 358–371. Springer, Berlin (1996)

    Google Scholar 

  26. Paterson, K.G.: Root counting, the DFT and the linear complexity of nonlinear filtering. Des. Codes Cryptogr. 14, 247–259 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Power, H.M.: The companion matrix and Liapunov functions for linear multivariable time-invariant systems. J. Franklin Inst. 283, 214–234 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin (1986)

    MATH  Google Scholar 

  29. Rueppel, R.A., Staffelbach, O.J.: Products of linear recurring sequences with maximum complexity. IEEE Trans. Inf. Theory 33, 124–131 (1987)

    Article  MATH  Google Scholar 

  30. Shparlinski, I.E.: On the singularity of generalized Vandermonde matrices over finite fields. Finite Fields Appl. 11, 193–199 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tu, L.W.: A partial order on partitions and the generalized Vandermonde determinant. J. Algebra 278, 127–133 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Van de Vel, H.: Numerical treatment of a generalized Vandermonde system of equations. Linear Algebra Appl. 17, 149–179 (1977)

    Article  MATH  Google Scholar 

  33. Yang, Y., Holtti, H.: The factorization of block matrices with generalized geometric progression rows. Linear Algebra Appl. 387, 51–67 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their thorough comments and suggestions, which helped to improve the technical content and the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Kolokotronis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolokotronis, N., Limniotis, K. & Kalouptsidis, N. Factorization of determinants over finite fields and application in stream ciphers. Cryptogr. Commun. 1, 175–205 (2009). https://doi.org/10.1007/s12095-008-0005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-008-0005-8

Keywords

Mathematics Subject Classifications (2000)

Navigation