Skip to main content
Log in

Autocorrelations of l-sequences with prime connection integer

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper, the autocorrelations of l-sequences with prime connection integer are discussed. Let \(\underline{a}\) be an l-sequence with connection integer p and period T = p − 1, we show that the autocorrelation \(C_{\underline{a}}(\tau )\) of \(\underline{a}\) with shift τ satisfies:

$$ \left\vert C_{\underline{a}}(\tau )-\frac{p-1}{p^{2}}\cdot \underset{c=1}{ \overset{p-1}{\sum }}\tan \left( \frac{\pi c2^{-\tau }}{p}\right) \tan \left( \frac{\pi c}{p}\right) \right\vert =O(\ln ^{2}p). $$

Thus by calculating this triangular sum, an estimate of \(C_{\underline{a} }(\tau )\) can be obtained. Particularly, for any shift τ with \( 2^{-\tau }(\mbox{mod}\ p)=(p-3)/2\) or \( (p+3)/2\), the autocorrelation \(C_{ \underline{a}}(\tau )\) of \(\underline{a}\) with shift τ satisfies \(C_{ \underline{a}}(\tau )=O(\ln ^{2}p)\), thus when p is sufficiently large, the autocorrelation is low. Such result also holds for the decimations of l-sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnault, F., Berger, T.P.: Design and properties of a new pseudorandom generator based on a filtered FCSR automaton. IEEE Trans. Comput. 54(11), 1374–1383 (2005)

    Article  Google Scholar 

  2. Arnault, F., Berger, T.P.: F-FCSR, design of a new class of stream ciphers. In: Fast Software Encryption. LNCS 3557, pp. 83–97. Springer, New York (2005)

    Google Scholar 

  3. Arnault, F., Berger, T.P., Lauradoux, C.: Update on F-FCSR stream cipher. ECRYPT Stream Cipher Project Report 2006/025. http://www.ecrypt.eu.org/stream (2006)

  4. Couture, R., L’Ecuyer, P.: On the lattice structure of certain linear congruential sequences related to AWC/SWB generators. Math. Comput. 62, 799–808 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Golomb, S.W.: Shift Register Sequences. Holden-Day, San Francisco (1967) (reprinted by Aegean Park Press, 1982)

  6. Goresky, M., Klapper, A.: Arithmetic crosscorrelations of feedback with carry shift register sequences. IEEE Trans. Inf. Theory 43(7), 1342–1345 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goresky, M., Klapper, A.: Periodicity and distribution properties of combined FCSR sequences. In: Sequnces and their Applications—SETA. LNCS 4086, pp. 334–341. Springer, New York (2006)

    Google Scholar 

  8. Klapper, A., Goresky, M.: 2-adic shift registers. In: Fast Software Encryption. LNCS 809, pp. 174–178. Springer, Berlin (1994)

    Google Scholar 

  9. Klapper, A., Goresky, M.: Large period nearly deBrujin FCSR sequences. In: Advances in Cryptology—Eurocrypt 1995. LNCS 921, pp. 263–273. Springer, New York (1995)

    Google Scholar 

  10. Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptol. 10, 111–147 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lidl, R., Niedereiter, H.: Finite Field. Addison-Wesley, Toronto (1983)

    Google Scholar 

  12. Marsaglia, G., Zaman, A.: A new class of random number generators. Ann. Appl. Probab. 1(3), 462–480 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Xu, H., Qi, W.-F.: Autocorrelations of maximum period FCSR sequences. SIAM J. Discrete Math. 20(3), 568–577 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the referees for their valuable comments and suggestions. We would like to especially thank the second referee for pointing out that the four values of τ given in the example of the previous manuscript correspond to \(\tau \in \left\{ -1,1, \frac{T}{2}-1,\frac{T}{2}+1\right\} \), where \(C_{\underline{a}}(\tau )\) take values − 2,0 and 2, and in that case our estimate is trivial. Following the referee’s advice, a more proper example is presented in this new revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu.

Additional information

This work was supported by the NSF of China under grant 60673081 and the 863 Project of China under grant 2006AA01Z417.

Appendix

Appendix

The proof of Lemma 3 is presented in this Appendix.

Before giving the proof, we first show some necessary lemmas.

Lemma 4

For any real x , if \(0<x<\frac{\pi }{2}\) , then

$$ \cos x>\frac{2}{\pi }\left( \frac{\pi }{2}-x\right) . $$

Proof

The result follows from \(\cos x=\sin \left( \frac{\pi }{2}-x\right) \) and \( \frac{\pi }{2}\sin x>x\) for \(0<x<\frac{\pi }{2}\). □

Lemma 5

For any real x , if \(0<x<\frac{\pi }{6}\) , then

$$ 0<\cos \left( \frac{\pi }{3}+x\right) <\frac{1-\sqrt[2]{3}x}{2}<\frac{1}{2}. $$

and if \(0<x<\frac{\pi }{3}\) , then

$$ \frac{1}{2}<\frac{1}{2}+\frac{\sqrt[2]{3}x}{4}<\cos \left( \frac{\pi }{3} -x\right) <1, $$

Proof

It is clear that \(0<\cos \left( \frac{\pi }{3}+x\right) <\frac{1}{2}\) for \( 0<x<\frac{\pi }{6}\), and \(\frac{1}{2}<\cos \left( \frac{\pi }{3}-x\right) <1\) for \(0<x<\frac{\pi }{3}\). Next we need only to show \(\cos \left( \frac{\pi }{ 3}+x\right) <\frac{1-\sqrt[2]{3}x}{2}\) for \(0<x<\frac{\pi }{6}\), and \(\cos \left( \frac{\pi }{3}-x\right) >\frac{1}{2}+\frac{\sqrt[2]{3}x}{4}\) for \(0<x< \frac{\pi }{3}\).

Since \(\cos x\!=\!\frac{1}{2}\!-\!\frac{\sqrt[2]{3}}{2}\left( x\!-\!\frac{\pi }{3} \right) \!-\!\frac{1}{2}\cdot \frac{\left( x\!-\!\frac{\pi }{3}\right) ^{2}}{2!}\!+\! \frac{\sqrt[2]{3}}{2}\!\cdot\! \frac{\left( x-\frac{\pi }{3}\right) ^{3}}{3!}+ \frac{1}{2}\!\cdot\! \frac{\left( x-\frac{\pi }{3}\right) ^{4}}{4!}-\frac{\sqrt[2 ]{3}}{2}\!\cdot\! \frac{\left( x-\frac{\pi }{3}\right) ^{5}}{5!}-...\), if \(0<x< \frac{\pi }{6}\), then we have

$$ \begin{array}{rcl} \cos \left( \frac{\pi }{3}+x\right) &=&\frac{1}{2}-\frac{\sqrt[2]{3}x}{2}- \frac{x^{2}}{4}+\frac{\sqrt[2]{3}x^{3}}{12}+... \\ &<&\frac{1}{2}-\frac{\sqrt[2]{3}x}{2}, \end{array} $$

and if \(0<x<\frac{\pi }{3}\), then we have

$$ \begin{array}{rcl} \cos \left( \frac{\pi }{3}-x\right) &=&\frac{1}{2}+\frac{\sqrt[2]{3}x}{2}- \frac{x^{2}}{4}-\frac{\sqrt[2]{3}x^{3}}{12}+\frac{1}{2}\cdot \frac{x^{4}}{4!} +.... \\ &>&\frac{1}{2}+\frac{\sqrt[2]{3}x}{2}-\frac{x^{2}}{4}-\frac{\sqrt[2]{3}x^{3} }{12} \\ &=&\frac{1}{2}+\frac{\sqrt[2]{3}x}{12}\left( 6-\sqrt[2]{3}x-x^{2}\right) \\ &>&\frac{1}{2}+\frac{\sqrt[2]{3}x}{12}\left( 6-\sqrt[2]{3}\cdot \frac{\pi }{3 }-\left( \frac{\pi }{3}\right) ^{2}\right) \\ &>&\frac{1}{2}+\frac{\sqrt[2]{3}x}{4}. \end{array} $$

Lemma 6

For any real x , if \(0<x<\frac{\pi }{3}\) , then

$$ \left\{ \begin{array}{c} 1<\frac{1}{\cos x(2\cos x-1)}<\frac{4\sqrt[2]{3}}{3\left( \frac{\pi }{3} -x\right) } \\[5pt] \frac{1}{3}<\frac{1}{\cos x(2\cos x+1)}<1 \end{array} \right. , $$

if \(\frac{\pi }{3}<x<\frac{\pi }{2}\) , then

$$ \left\{ \begin{array}{c} -\frac{\sqrt[2]{3}\pi }{6\left( x-\frac{\pi }{3}\right) \left( \frac{\pi }{2} -x\right) }<\frac{1}{\cos x(2\cos x-1)}<-2 \\[5pt] 1<\frac{1}{\cos x(2\cos x+1)}<\frac{\pi }{2\left( \frac{\pi }{2}-x\right) } \end{array} \right. , $$

if \(\frac{\pi }{2}<x<\frac{2\pi }{3}\) , then

$$ \left\{ \begin{array}{c} 1<\frac{1}{\cos x(2\cos x-1)}<\frac{\pi }{2\left( x-\frac{\pi }{2}\right) } \\[5pt] -\frac{\sqrt[2]{3}\pi }{6\left( x-\frac{\pi }{2}\right) \left( \frac{2\pi }{3 }-x\right) }<\frac{1}{\cos x(2\cos x+1)}<-2 \end{array} \right. , $$

and if \(\frac{2\pi }{3}<x<\pi \) , then

$$ \left\{ \begin{array}{c} \frac{1}{3}<\frac{1}{\cos x(2\cos x-1)}<1 \\[5pt] 1<\frac{1}{\cos x(2\cos x+1)}<\frac{4\sqrt[2]{3}}{3\left( x-\frac{2\pi }{3} \right) } \end{array} \right. . $$

Proof

  1. (1)

    If \(0<x<\frac{\pi }{3}\), then from Lemma 5 we know that \( 1{\kern-1pt} >{\kern-1pt}\cos x{\kern-1pt}={\kern-1pt}\cos \left( \frac{\pi }{3}-\left( \frac{\pi }{3}-x\right) \right)>\) \( \frac{1}{2}+\frac{\sqrt[2]{3}}{4}\left( \frac{\pi }{3}-x\right) >\frac{1}{2}\) , thus we have

    $$ \left\{ \begin{array}{c} \frac{1}{2}<\frac{1}{2}+\frac{\sqrt[2]{3}}{4}\left( \frac{\pi }{3}-x\right) <\cos x<1 \\[5pt] \frac{\sqrt[2]{3}}{2}\left( \frac{\pi }{3}-x\right) <2\cos x-1<1 \\ 2<2\cos x+1<3 \end{array} \right. . $$

    Hence

    $$ \left\{ \begin{array}{c} \frac{\sqrt[2]{3}}{4}\left( \frac{\pi }{3}-x\right) <\cos x(2\cos x-1)<1 \\[5pt] 1<\cos x(2\cos x+1)<3 \end{array} \right. , $$

    that is,

    $$ \left\{ \begin{array}{c} 1<\frac{1}{\cos x(2\cos x-1)}<\frac{4\sqrt[2]{3}}{3\left( \frac{\pi }{3} -x\right) } \\[5pt] \frac{1}{3}<\frac{1}{\cos x(2\cos x+1)}<1 \end{array} \right. . $$
  2. (2)

    If \(\frac{\pi }{3}<x<\frac{\pi }{2}\), then from Lemma 4 and 5 we have

    $$ \cos x>\frac{2}{\pi }\left( \frac{\pi }{2}-x\right) >0 $$

    and

    $$ \cos x=\cos \left( \frac{\pi }{3}+\left( x-\frac{\pi }{3}\right) \right) < \frac{1}{2}-\frac{\sqrt[2]{3}}{2}\left( x-\frac{\pi }{3}\right) <\frac{1}{2}. $$

    Thus we have

    $$ \left\{ \begin{array}{c} 0<\frac{2}{\pi }\left( \frac{\pi }{2}-x\right) <\cos x<\frac{1}{2}-\frac{ \sqrt[2]{3}}{2}\left( x-\frac{\pi }{3}\right) <\frac{1}{2} \\[5pt] -1<2\cos x-1<-\sqrt[2]{3}\left( x-\frac{\pi }{3}\right) \\[5pt] 1<2\cos x+1<2 \end{array} \right. . $$

    Hence

    $$ \left\{ \begin{array}{c} -\frac{\sqrt[2]{3}\pi }{6\left( x-\frac{\pi }{3}\right) \left( \frac{\pi }{2} -x\right) }<\frac{1}{\cos x(2\cos x-1)}<-2 \\[5pt] 1<\frac{1}{\cos x(2\cos x+1)}<\frac{\pi }{2\left( \frac{\pi }{2}-x\right) } \end{array} \right. . $$
  3. (3)

    If \(\frac{\pi }{2}<x<\frac{2\pi }{3}\), then \(\frac{\pi }{3}<\pi -x<\frac{ \pi }{2}\). By Lemma 4 and 5 we have

    $$ -\cos x=\cos (\pi -x)>\frac{2}{\pi }\left( \frac{\pi }{2}-(\pi -x)\right) = \frac{2}{\pi }\left( x-\frac{\pi }{2}\right) >0, $$

    and

    $$ -\cos x=\cos (\pi -x)=\cos \left( \frac{\pi }{3}+\left( \frac{2\pi }{3} -x\right) \right) <\frac{1}{2}-\frac{\sqrt[2]{3}}{2}\left( \frac{2\pi }{3} -x\right) <\frac{1}{2}. $$

    Thus

    $$ \left\{ \begin{array}{c} -\frac{1}{2}<-\frac{1}{2}+\frac{\sqrt[2]{3}}{2}\left( \frac{2\pi }{3} -x\right) <\cos x<-\frac{2}{\pi }\left( x-\frac{\pi }{2}\right) <0 \\[5pt] -2<2\cos x-1<-1 \\ \sqrt[2]{3}\left( \frac{2\pi }{3}-x\right) <2\cos x+1<1 \end{array} \right. . $$

    Hence

    $$ \left\{ \begin{array}{c} 1<\frac{1}{\cos x(2\cos x-1)}<\frac{\pi }{2\left( x-\frac{\pi }{2}\right) } \\[5pt] -\frac{\sqrt[2]{3}\pi }{6\left( x-\frac{\pi }{2}\right) \left( \frac{2\pi }{3 }-x\right) }<\frac{1}{\cos x(2\cos x+1)}<-2 \end{array} \right. . $$
  4. (4)

    If \(\frac{2\pi }{3}<x<\pi \), then \(0<\pi -x<\frac{\pi }{3}\). By Lemma 5 we have

    $$ 1>-\cos x=\cos (\pi -x)=\cos \left( \frac{\pi }{3}-\left( x-\frac{2\pi }{3} \right) \right) >\frac{1}{2}+\frac{\sqrt[2]{3}}{4}\left( x-\frac{2\pi }{3} \right) >\frac{1}{2}. $$

    Thus

    $$ \left\{ \begin{array}{c} -1<\cos x<-\frac{1}{2}-\frac{\sqrt[2]{3}}{4}\left( x-\frac{2\pi }{3}\right) <-\frac{1}{2} \\[5pt] -3<2\cos x-1<-2 \\[5pt] -1<2\cos x+1<-\frac{\sqrt[2]{3}}{2}\left( x-\frac{2\pi }{3}\right) \end{array} \right. . $$

    Hence

    $$ \left\{ \begin{array}{c} \frac{1}{3}<\frac{1}{\cos x(2\cos x-1)}<1 \\[5pt] 1<\frac{1}{\cos x(2\cos x+1)}<\frac{4\sqrt[2]{3}}{3\left( x-\frac{2\pi }{3} \right) } \end{array} \right. . $$

Lemma 7

Let k,l be any positive integers. If 0 < a < k < l < b, then

$$ \underset{x=k}{\overset{l}{\sum }}\frac{1}{x-a}\leq \frac{1}{k-a}+\ln \frac{ l-a}{k-a}, $$

and

$$ \underset{x=k}{\overset{l}{\sum }}\frac{1}{b-x}\leq \frac{1}{b-l}+\ln \frac{ b-k}{b-l}. $$

Proof

The first result follows from

$$ \underset{x=k}{\overset{l}{\sum }}\frac{1}{x-a}\leq \frac{1}{k-a} +\int\nolimits_{k}^{l}\frac{dx}{x-a}\text{ and }\int \frac{dx}{x-a}=\ln (x-a), $$

and the second result follows from

$$ \underset{x=k}{\overset{l}{\sum }}\frac{1}{b-x}\leq \frac{1}{b-l} +\int\nolimits_{k}^{l}\frac{dx}{b-x}\text{ and }\int \frac{dx}{b-x}=-\ln (b-x). $$

Lemma 8

Let k,l be any positive integers, and b > a > 0 be any real numbers. If a < k < l < (a + b)/2, then

$$ \underset{x=k}{\overset{l}{\sum }}\frac{1}{(x-a)(b-x)}\leq \frac{1}{ (k-a)(b-k)}+\frac{1}{b-a}\cdot \ln \frac{(l-a)(b-k)}{(b-l)(k-a)}, $$

and if (a + b)/2 < k < l < b, then

$$ \underset{x=k}{\overset{l}{\sum }}\frac{1}{(x-a)(b-x)}\leq \frac{1}{ (l-a)(b-l)}+\frac{1}{b-a}\cdot \ln \frac{(l-a)(b-k)}{(b-l)(k-a)}. $$

Proof

Since \(\frac{1}{(x-a)(b-x)}\) is monotonically decrease when a < x < (a + b)/2, and monotonically increase when (a + b)/2 < x < b, the result follows from

$$ \int \frac{dx}{(x-a)(b-x)}=\frac{1}{b-a}\cdot \ln \frac{(x-a)}{(b-x)} $$

and

$$ \left\{ \begin{array}{c} \underset{x=k}{\overset{l}{\sum }}\frac{1}{(x-a)(b-x)}\leq \frac{1}{ (k-a)(b-k)}+\int\nolimits_{k}^{l}\frac{dx}{(x-a)(b-x)},\text{ }\ \ \text{if \ \ }a<k<l<(a+b)/2, \\ \underset{x=k}{\overset{l}{\sum }}\frac{1}{(x-a)(b-x)}\leq \frac{1}{ (l-a)(b-l)}+\int\nolimits_{k}^{l}\frac{dx}{(x-a)(b-x)},\text{ \ \ if \ \ } (a+b)/2<k<l<b. \end{array} \right. $$

Proof

(Proof of Lemma 3) It’s clear that S(p − γ) = − S(γ), i.e. |S(p − γ)| = |S(γ)|. So we need only to show the case γ = (p + 3)/2. In this case, we have

$$ \begin{array}{rcl} S\left( \frac{p+3}{2}\right) &=&\!\!\overset{p-1}{\underset{c=1}{\sum }}\tan \left( \frac{\pi c(p+3)}{2p}\right) \tan \left( \frac{\pi c}{p}\right) = \overset{p-1}{\underset{c=1}{\sum }}\tan \left( \frac{\pi c}{2}+\frac{3\pi c }{2p}\right) \tan \left( \frac{\pi c}{p}\right) \\ &=&\!\!\underset{ \begin{array}{c} 1\!\leq\! c\!\leq\! p\!-\!1 \\ 2|c \end{array} }{\sum }\tan \left( \frac{3\pi c}{2p}\right) \tan \left( \frac{\pi c}{p} \right) -\underset{ \begin{array}{c} 1\!\leq\! c\!\leq\! p\!-\!1\!\! \\ 2\nmid c \end{array} }{\sum }\cot \left( \frac{3\pi c}{2p}\right) \tan \left( \frac{\pi c}{p} \right) \end{array} $$

On the other hand, it can be shown that \(\tan \left( \frac{3\pi c}{2p} \right) \tan \left( \frac{\pi c}{p}\right) =-1+\frac{1}{\cos \left( \frac{ \pi c}{p}\right) \left( 2\cos \left( \frac{\pi c}{p}\right) -1\right) }\), and \(\cot \left( \frac{3\pi c}{2p}\right) \tan \left( \frac{\pi c}{p}\right) =1+\frac{1}{\cos \left( \frac{\pi c}{p}\right) \left( 2\cos \left( \frac{\pi c}{p}\right) +1\right) }\), thus we have

$$\label{eqn11} \begin{array}{rcl} S\left( \frac{p+3}{2}\right) &=&-(p-1)+\underset{ \begin{array}{c} 1\leq c\leq p-1 \\ 2|c \end{array} }{\sum }\frac{1}{\cos \left( \frac{\pi c}{p}\right) \left( 2\cos \left( \frac{\pi c}{p}\right) -1\right) } \notag \\ &&-\underset{ \begin{array}{c} 1\leq c\leq p-1 \\ 2\nmid c \end{array} }{\sum }\frac{1}{\cos \left( \frac{\pi c}{p}\right) \left( 2\cos \left( \frac{\pi c}{p}\right) +1\right) } \notag \\ &=&-(p-1)+I_{e}-I_{o}, \end{array} $$
(10)

where

$$ \begin{array}{rcl} I_{e} &=&\underset{ \begin{array}{c} 1\leq c\leq p-1 \\ 2|c \end{array} }{\sum }\frac{1}{\cos \left( \frac{\pi c}{p}\right) \left( 2\cos \left( \frac{\pi c}{p}\right) -1\right) } \\ &=&\overset{(p-1)/2}{\underset{c=1}{\sum }}\frac{1}{\cos \left( \frac{2\pi c }{p}\right) \left( 2\cos \left( \frac{2\pi c}{p}\right) -1\right) }, \end{array} $$

and

$$ \begin{array}{rcl} I_{o} &=&\underset{ \begin{array}{c} 1\leq c\leq p-1 \\ 2\nmid c \end{array} }{\sum }\frac{1}{\cos \left( \frac{\pi c}{p}\right) \left( 2\cos \left( \frac{\pi c}{p}\right) +1\right) } \\ &=&\overset{(p-1)/2}{\underset{c=1}{\sum }}\frac{1}{\cos \left( \frac{\pi (2c-1)}{p}\right) \left( 2\cos \left( \frac{\pi (2c-1)}{p}\right) +1\right) } . \end{array} $$

Next we estimate I e and I o respectively.

Let \(x=\frac{2\pi c}{p},\) then from Lemma 6 we know that

$$ \left\{ \begin{array}{cc} 1<\frac{1}{\cos x\left( 2\cos x-1\right) }<\frac{4\sqrt[2]{3}}{3\left( \frac{ \pi }{3}-\frac{2\pi c}{p}\right) }, & \text{if }1\leq c\leq \left\lfloor \frac{p}{6}\right\rfloor \text{,} \\[10pt] -\frac{\sqrt[2]{3}\pi }{6\left( \frac{2\pi c}{p}-\frac{\pi }{3}\right) \left( \frac{\pi }{2}-\frac{2\pi c}{p}\right) }<\frac{1}{\cos x\left( 2\cos x-1\right) }<-2,\text{ } & \text{if }\left\lceil \frac{p}{6}\right\rceil \leq c\leq \left\lfloor \frac{p}{4}\right\rfloor \text{,} \\[10pt] 1<\frac{1}{\cos x\left( 2\cos x-1\right) }<\frac{\pi }{2\left( \frac{2\pi c}{ p}-\frac{\pi }{2}\right) }, & \text{\ if }\left\lceil \frac{p}{4} \right\rceil \leq c\leq \left\lfloor \frac{p}{3}\right\rfloor \text{,} \\[10pt] \frac{1}{3}<\frac{1}{\cos x\left( 2\cos x-1\right) }<1, & \text{if } \left\lceil \frac{p}{3}\right\rceil \leq c\leq \frac{p-1}{2}\text{.} \end{array} \right. $$

That is,

$$ \left\{ \begin{array}{cc} 1<\frac{1}{\cos x\left( 2\cos x-1\right) }<\frac{2\sqrt[2]{3}p}{3\pi \left( \frac{p}{6}-c\right) }, & \text{if }1\leq c\leq \left\lfloor \frac{p}{6} \right\rfloor \text{,} \\[10pt] -\frac{\sqrt[2]{3}p^{2}}{24\pi \left( c-\frac{p}{6}\right) \left( \frac{p}{4} -c\right) }<\frac{1}{\cos x\left( 2\cos x-1\right) }<-2,\text{ } & \text{if } \left\lceil \frac{p}{6}\right\rceil \leq c\leq \left\lfloor \frac{p}{4} \right\rfloor \text{,} \\[10pt] 1<\frac{1}{\cos x\left( 2\cos x-1\right) }<\frac{p}{4\left( c-\frac{p}{4} \right) }, & \text{\ if }\left\lceil \frac{p}{4}\right\rceil \leq c\leq \left\lfloor \frac{p}{3}\right\rfloor \text{,} \\[10pt] \frac{1}{3}<\frac{1}{\cos x\left( 2\cos x-1\right) }<1, & \text{if } \left\lceil \frac{p}{3}\right\rceil \leq c\leq \frac{p-1}{2}\text{.} \end{array} \right. $$

Thus

$$ \left\{ \begin{array}{c} \left\lfloor \frac{p}{6}\right\rfloor <\overset{\left\lfloor \frac{p}{6} \right\rfloor }{\underset{c=1}{\sum }}\frac{1}{\cos \left( \frac{2\pi c}{p} \right) \left( 2\cos \left( \frac{2\pi c}{p}\right) -1\right) }<\frac{2\sqrt[ 2]{3}p}{3\pi }\cdot \left( \underset{c=1}{\overset{\left\lfloor \frac{p}{6} \right\rfloor }{\sum }}\frac{1}{\frac{p}{6}-c}\right) , \\[15pt] -\frac{\sqrt[2]{3}p^{2}}{24\pi }\cdot \left( \overset{\left\lfloor \frac{p}{4 }\right\rfloor }{\underset{c=\left\lceil \frac{p}{6}\right\rceil }{\sum }} \frac{1}{\left( c-\frac{p}{6}\right) \left( \frac{p}{4}-c\right) }\right) < \overset{\left\lfloor \frac{p}{4}\right\rfloor }{\underset{c=\left\lceil \frac{p}{6}\right\rceil }{\sum }}\frac{1}{\cos \left( \frac{2\pi c}{p} \right) \left( 2\cos \left( \frac{2\pi c}{p}\right) -1\right) }<-2\left( \left\lfloor \frac{p}{4}\right\rfloor -\left\lceil \frac{p}{6}\right\rceil +1\right) , \\[15pt] \left\lfloor \frac{p}{3}\right\rfloor -\left\lceil \frac{p}{4}\right\rceil +1<\overset{\left\lfloor \frac{p}{3}\right\rfloor }{\underset{c=\left\lceil \frac{p}{4}\right\rceil }{\sum }}\frac{1}{\cos \left( \frac{2\pi c}{p} \right) \left( 2\cos \left( \frac{2\pi c}{p}\right) -1\right) }<\frac{p}{4} \cdot \left( \overset{\left\lfloor \frac{p}{3}\right\rfloor }{\underset{ c=\left\lceil \frac{p}{4}\right\rceil }{\sum }}\frac{1}{c-\frac{p}{4}} \right) ,\text{ } \\[15pt] \frac{1}{3}\left( \frac{p-1}{2}-\left\lceil \frac{p}{3}\right\rceil +1\right) <\overset{\frac{p-1}{2}}{\underset{c=\left\lceil \frac{p}{3} \right\rceil }{\sum }}\frac{1}{\cos \left( \frac{2\pi c}{p}\right) \left( 2\cos \left( \frac{2\pi c}{p}\right) -1\right) }<\left( \frac{p-1}{2} -\left\lceil \frac{p}{3}\right\rceil +1\right) . \end{array} \right. $$

By Lemma 7 and 8, asymptotically we have

$$ -\frac{\sqrt[2]{3}}{\pi }p\ln p-2p-7<I_{e}<\left( \frac{2\sqrt[2]{3}}{3\pi }+ \frac{1}{4}\right) p\ln p+3p+1, \label{eqn12} $$
(11)

Let \(y=\frac{\pi (2c-1)}{p},\) then from Lemma 6 we know that

$$ \left\{ \begin{array}{cc} \frac{1}{3}<\frac{1}{\cos y\left( 2\cos y+1\right) }<1, & \text{if }1\leq c\leq \left\lfloor \frac{p+3}{6}\right\rfloor \text{,} \\[10pt] 1<\frac{1}{\cos y\left( 2\cos y+1\right) }<\frac{\pi }{2\left( \frac{\pi }{2} -\frac{\pi (2c-1)}{p}\right) },\text{ } & \text{if }\left\lceil \frac{p+3}{6} \right\rceil \leq c\leq \left\lfloor \frac{p+2}{4}\right\rfloor \text{,} \\[10pt] -\frac{\sqrt[2]{3}\pi }{6\left( \frac{\pi (2c-1)}{p}-\frac{\pi }{2}\right) \left( \frac{2\pi }{3}-\frac{\pi (2c-1)}{p}\right) }<\frac{1}{\cos y\left( 2\cos y+1\right) }<-2, & \text{\ if }\left\lceil \frac{p+2}{4}\right\rceil \leq c\leq \left\lfloor \frac{2p+3}{6}\right\rfloor \text{,} \\[10pt] 1<\frac{1}{\cos y\left( 2\cos y+1\right) }<\frac{4\sqrt[2]{3}}{3\left( \frac{ \pi (2c-1)}{p}-\frac{2\pi }{3}\right) }, & \text{if }\left\lceil \frac{2p+3}{ 6}\right\rceil \leq c\leq \frac{p-1}{2}\text{.} \end{array} \right. $$

Thus

$$ \left\{ \begin{array}{c} \frac{1}{3}\cdot \left\lfloor \frac{p+3}{6}\right\rfloor <\overset{ \left\lfloor \frac{p+3}{6}\right\rfloor }{\underset{c=1}{\sum }}\frac{1}{ \cos \left( \frac{\pi (2c-1)}{p}\right) \left( 2\cos \left( \frac{\pi (2c-1) }{p}\right) +1\right) }<\left\lfloor \frac{p+3}{6}\right\rfloor , \\\\ \left\lfloor \frac{p+2}{4}\right\rfloor -\left\lceil \frac{p+3}{6} \right\rceil +1<\overset{\left\lfloor \frac{p+2}{4}\right\rfloor }{\underset{ c=\left\lceil \frac{p+3}{6}\right\rceil }{\sum }}\frac{1}{\cos \left( \frac{ \pi (2c-1)}{p}\right) \left( 2\cos \left( \frac{\pi (2c-1)}{p}\right) +1\right) }<\frac{p}{4}\cdot \left( \overset{\left\lfloor \frac{p+2}{4} \right\rfloor }{\underset{c=\left\lceil \frac{p+3}{6}\right\rceil }{\sum }} \frac{1}{\frac{p+2}{4}-c}\right) ,\text{ } \\\\ -\frac{\sqrt[2]{3}p^{2}}{24\pi }\cdot \left( \overset{\left\lfloor \frac{2p+3 }{6}\right\rfloor }{\underset{c=\left\lceil \frac{p+2}{4}\right\rceil }{ \sum }}\frac{1}{\left( c-\frac{p+2}{4}\right) \left( \frac{2p+3}{6} -c\right) }\right) <\overset{\left\lfloor \frac{2p+3}{6}\right\rfloor }{ \underset{c=\left\lceil \frac{p+2}{4}\right\rceil }{\sum }}\frac{1}{\cos \left( \frac{\pi (2c-1)}{p}\right) \left( 2\cos \left( \frac{\pi (2c-1)}{p} \right) +1\right) } \\\\ <-2\left( \left\lfloor \frac{2p+3}{6}\right\rfloor -\text{ }\left\lceil \frac{ p+2}{4}\right\rceil +1\right) , \\\\ \frac{p-1}{2}-\left\lceil \frac{2p+3}{6}\right\rceil +1<\overset{\frac{p-1}{2 }}{\underset{c=\left\lceil \frac{2p+3}{6}\right\rceil }{\sum }}\frac{1}{ \cos \left( \frac{\pi (2c-1)}{p}\right) \left( 2\cos \left( \frac{\pi (2c-1) }{p}\right) +1\right) }<\frac{2\sqrt[2]{3}p}{3\pi }\cdot \left( \overset{ \frac{p-1}{2}}{\underset{c=\left\lceil \frac{2p+3}{6}\right\rceil }{\sum }} \frac{1}{c-\frac{2p+3}{6}}\right) . \end{array} \right. $$

Similarly as above, by Lemma 7 and 8, we can also obtain

$$ -\frac{\sqrt[2]{3}}{\pi }p\ln p-2p-7<I_{o}<\left( \frac{2\sqrt[2]{3}}{3\pi }+ \frac{1}{4}\right) p\ln p+3p+1, \label{eqn13} $$
(12)

Combining (10), (11) and (12), we can get

$$ -\left( \frac{5\sqrt[2]{3}}{3\pi }+\frac{1}{4}\right) p\ln p-6p-7<S\left( \frac{p+3}{2}\right) <\left( \frac{5\sqrt[2]{3}}{3\pi }+\frac{1}{4}\right) p\ln p+4p+9. $$

Hence

$$ \left\vert S\left( \frac{p+3}{2}\right) \right\vert <\left( \frac{5\sqrt[2]{3 }}{3\pi }+\frac{1}{4}\right) p\ln p+6p+7. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Qi, WF. & Zheng, YH. Autocorrelations of l-sequences with prime connection integer. Cryptogr. Commun. 1, 207–223 (2009). https://doi.org/10.1007/s12095-008-0008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-008-0008-5

Keywords

Navigation