Skip to main content

Advertisement

Log in

Hadamard matrices and their applications: Progress 2007–2010

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

We survey research progress in Hadamard matrices, especially cocyclic Hadamard matrices, their generalisations and applications, made over the past three years. Advances in 20 specific problems and several new research directions are outlined. Two new problems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Also denoted GH(v, N), or GH(v, m) when N is a group of m th roots of unity.

  2. The “opposite” multiplication in Aut(N) is needed: σ 1 σ 2 = σ 1 ∘ σ 2.

  3. The formula in [34, Def. 6.2] is \(\partial\phi(g, h) = \phi(g)^{-1} (\phi(h)^{\varepsilon(g)})^{-1} \phi(g h)\); that is, the coboundary \(\partial(\phi^{-1})\) according to (3). Both definitions of \(\partial\phi\) are in use. Each is correct, if applied consistently.

  4. A different definition of Hadamard graph (due to Ito [39]) is the graph with vertex set \(V_{4n} = \{0, 1\}^{4n}\) and edge set \(E_{4n} = \{(u, v) \in V_{4n}^2 ~|~ d_H(u, v) = 2n\}\), where d H (u, v) is the Hamming distance between u and v.

References

  1. Adams, S.S., Crawford, M., Greeley, C., Lee, B., Murugan, M.K.: Multilevel and multidimensional Hadamard matrices. Des. Codes Cryptogr. 51, 245–252 (2009)

    Article  MathSciNet  Google Scholar 

  2. Alvarez, V., Armario, J.A., Frau, M.D., Gudiel, F., Osuna, A.: Rooted trees searching for cocyclic Hadamard matrices over D 4t , AAECC-19. In: Bras-Amoros, M., Hoholdt, T. (eds.) LNCS, vol. 5527, pp. 204–214. Springer, Berlin (2009)

  3. Alvarez, V., Armario, J.A., Frau, M.D., Real, P.: A system of equations for describing cocyclic Hadamard matrices. c 16(4), 276–290 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Alvarez, V., Armario, J.A., Frau, M.D., Real, P.: J. Symb. Comput. 44, 558–570 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alvarez, V., Frau, M.D., Osuna, A.: A Heuristic Procedure with Guided Reproduction for Constructing Cocyclic Hadamard Matrices, ICANNGA 2009. In: Kolehmainen, M. et al., (eds.) LNCS, vol. 5495, pp. 150–160. Springer, Berlin (2009)

  6. Bierbrauer, J.: New commutative semifields and their nuclei. In: Bras-Amorós, M., Hoholdt, T. (eds.). AAECC 2009. LNCS, vol. 5527, pp. 179–185 (2009)

  7. Bierbrauer, J.: New semifields, PN and APN functions. Des. Codes Cryptogr. 54, 189–200 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borges, J., Phelps, K.T., Rifa, J.: The rank and kernel of extended 1-perfect \({\mathbb Z}_4\)-linear codes and additive non-\({\mathbb Z}_4\)-linear codes. IEEE Trans. Inf. Theory 49(8), 2028–2034 (2003)

    Article  MathSciNet  Google Scholar 

  9. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-regular Graphs. Springer, Heidelberg, Berlin (1989)

    MATH  Google Scholar 

  10. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect nonlinear polynomials. IEEE Trans. Inf. Theory 52, 1141–1152 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Budaghyan, L., Carlet, C., Leander, G.: Another class of quadratic APN binomials over \({\mathbb F}_{2^n}\): the case n divisible by 4. In: Proceedings, International Workshop on Coding and Cryptography, INRIA-Rocquencourt, France, 16–20 April 2007, pp. 49–58

  12. Cameron, P.: Personal Communication. 2 July 2009

  13. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, Y.-Q.: Twisted product of cocycles and factorization of semi-regular relative difference sets. J. Comb. Des. 16, 431–441 (2008)

    Article  MATH  Google Scholar 

  15. Coulter, R.S., Henderson, M.: Commutative presemifields and semifields. Adv. Math. 217, 282–304 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Craigen, R.: Mathematical Reviews. MR2265694 (2008d:05036)

  17. Craigen, R., de Launey, W.: Generalized Hadamard matrices whose transposes are not generalized Hadamard matrices. J. Comb. Des. 17, 456–458 (2009)

    Article  MATH  Google Scholar 

  18. Craigen, R., de Launey, W.: Personal Correspondence. 27 July 2009

  19. Craigen, R., Holzmann, W.H., Kharaghani, H.: On the asymptotic existence of complex Hadamard matrices. J. Comb. Des. 5, 319–327 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Craigen, R., Kharaghani, H.: Hadamard matrices and Hadamard designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 273–280. CRC Press, Boca Raton (2007)

  21. de Caen, D., Mathon, R., Moorhouse, G.E.: A family of antipodal distance-regular graphs related to the classical Preparata codes. J. Algebr. Comb. 4, 317–327 (1995)

    Article  MATH  Google Scholar 

  22. de Launey, W.: On the asymptotic existence of Hadamard matrices. J. Comb. Theory, A 116, 1002–1008 (2009)

    Article  MATH  Google Scholar 

  23. de Launey, W., Gordon, D.M.: On the density of the set of known Hadamard orders. Cryptogr. Comm. (2010, CCDS special issue). doi:10.1007/s12095-010-0028-9

  24. de Launey, W., Kharaghani, H.: On the asymptotic existence of cocyclic Hadamard matrices. J. Comb. Theory, A 116, 1140–1153 (2009)

    Article  MATH  Google Scholar 

  25. de Launey, W., Smith, M.J.: Cocyclic orthogonal designs and the asymptotic existence of cocyclic Hadamard matrices and maximal size relative difference sets with forbidden subgroup of size 2. J. Comb. Theory, A 93, 37–92 (2001)

    Article  MATH  Google Scholar 

  26. de Launey, W., Stafford, R.M.: Automorphisms of higher-dimensional Hadamard matrices. J. Comb. Des. 16, 507–544 (2008)

    Article  MATH  Google Scholar 

  27. Dillon, J.F.: Personal Correspondence. 27 February and 15 March 2010

  28. Djokovic, D.Z.: Hadamard matrices of order 764 exist. Combinatorica 28(4) 487–489 (2008)

    Article  MathSciNet  Google Scholar 

  29. Farmer, D.G., Horadam, K.J.: Presemifield bundles over GF(p 3). In: Proc. ISIT 2008, pp. 2613–2616. IEEE, Toronto (2008)

    Google Scholar 

  30. Farmer, D.G., Horadam, K.J.: A polynomial approach to cocycles over elementary abelian groups. J. Aust. Math. Soc. 85, 177–190 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Galati, J.C.: A group extensions approach to relative difference sets. J. Comb. Des. 12, 279–298 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gibbons, P.B., Mathon, R.: Enumeration of generalised Hadamard matrices of order 16 and related designs. J. Comb. Des. 17, 119–135 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Horadam, K.J.: A theory of highly nonlinear functions, AAECC-16. In: Fossorier, M. et al., (eds.) LNCS, vol. 3857, pp. 87–100. Springer, Berlin (2006)

  34. Horadam, K.J.: Hadamard Matrices and Their Applications. Princeton University Press, Princeton, NJ (2007)

  35. Horadam, K.J.: EA and CCZ equivalence of functions over GF(2n). In: von zur Gathen, J., et al. (eds.) Proc. WAIFI 2008. LNCS, vol. 5130, pp. 134–143. Springer, Berlin (2008)

  36. Horadam, K.J.: Orbiting round the Five-fold constellation (invited lecture). In: Group Theory, Combinatorics and Computation 2009. International Conference in Honour of Professor Cheryl Praeger’s 60th Birthday, Perth, 5 January 2009

  37. Horadam, K.J., Farmer, D.G.: Bundles, presemifields and nonlinear functions. In: Augot, D., Sendrier, N., Tillich J.-P. (eds.) Proc. International Workshop on Coding and Cryptography, pp. 197–206. Versailles, France (2007)

  38. Horadam, K.J., Farmer, D.G.: Bundles, presemifields and nonlinear functions. Des. Codes Cryptogr. 49, 79–94 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ito, N.: Hadamard graphs I; II. Graphs Comb. 1, 57–64; 331–337 (1985)

    Article  MATH  Google Scholar 

  40. Kyureghyan, G.M., Pott, A.: Some theorems on planar mappings. In: von zur Gathen, J., et al. (eds.) Proc. WAIFI 2008. LNCS, vol. 5130, pp. 117–122. Springer, Berlin (2008)

    Google Scholar 

  41. Ma, K.: Equivalence classes of n-dimensional proper Hadamard matrices. Australas. J. Combin. 25, 3–17 (2002)

    MATH  MathSciNet  Google Scholar 

  42. McGuire, G., Ward, H.N.: Cocyclic Hadamard matrices from forms over finite Frobenius rings. Linear Algebra App. 430, 1730–1738 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Ó Catháin P.: Group Actions on Hadamard Matrices, M. Litt. Thesis, National University of Ireland, Galway (2008)

  44. Ó Catháin, P., Röder, M.: The cocyclic Hadamard matrices of order less than 40. Des. Codes Cryptogr. (2010). doi:10.1007/s10623-010-9385-9

    Google Scholar 

  45. Ó Catháin, P., Stafford, R.M.: On twin prime power Hadamard matrices. Cryptogr. Comm. (2010, CCDS special issue). doi:10.1007/s12095-010-0030-2

  46. Phelps, K.T., Rifa, J., Villanueva, M.: Rank and kernel of binary Hadamard codes. IEEE Trans. Inf. Theory 51(11), 3931–3937 (2005)

    Article  MathSciNet  Google Scholar 

  47. Phelps, K.T., Rifa, J., Villanueva, M.: Hadamard codes of length 2t s (s odd): Rank and kernel, AAECC-16. In: Fossorier, M., et al. (eds.) LNCS, vol. 3857, pp. 328–337. Springer, Berlin (2006)

  48. Pott, A.: A survey on relative difference sets. In: Groups, Difference Sets and the Monster, pp. 195–232. de Gruyter, New York (1996)

  49. Rifa, J., Solov’eva, F.I., Villanueva, M.: On the intersection of \({\mathbb Z}_2{\mathbb Z}_4\)-additive Hadamard codes. IEEE Trans. Inf. Theory 55(4), 1766–1774 (2009)

    Article  MathSciNet  Google Scholar 

  50. Stepanov, S.A.: A new class of nonlinear senary codes. Probl. Inf. Transm. 42(2), 114–122 (2006)

    Article  MathSciNet  Google Scholar 

  51. Trinh, Q.K., Fan, P., Gabidulin, E.M.: Multilevel Hadamard matrices and zero correlation zone sequences. Electron. Lett. 42(13), 748–750 (2006)

    Article  Google Scholar 

  52. Yang, Y.X., Niu, X.X., Xu, C.Q.: Theory and Applications of Higher Dimension Hadamard Matrices, 2nd edn. Chapman and Hall (2010). ISBN: 978-1-4398180-7-7

  53. Zha, Z., Kyuraghyan, G., Wang, X.: Perfect nonlinear binomials and their semifields. Finite Fields Appl. 15, 125–133 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am most grateful to the referees for comprehensive and expert reviews which greatly assisted me to clarify and polish this survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Horadam.

Additional information

Dedicated to Warwick de Launey for his 50th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horadam, K.J. Hadamard matrices and their applications: Progress 2007–2010. Cryptogr. Commun. 2, 129–154 (2010). https://doi.org/10.1007/s12095-010-0032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-010-0032-0

Keywords