Skip to main content
Log in

Paraunitary generation/correlation of QAM complementary sequence pairs

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

A unique decomposition of arbitrary pairs of complementary sequences (including standard binary, polyphase and QAM sequences as well as non-standard sequences and kernels) based on paraunitary matrices is presented. This decomposition allows us to describe the internal structure of any sequence pair of length L using basic paraunitary matrices defined by an ordered set of L complex coefficients named the omega vector. When the omega vector is sparse, the canonic form is compact and leads to an efficient implementation of a generator/correlator. We show that sequences generated by the standard algorithm have the sparsest known omega vector (log2 L non-zero elements out of L) and, thus, the most efficient generator/correlator. The equivalence of paraunitary matrices and Z transforms of complementary sequences allows us to apply the rich results from the theory of perfect reconstruction filter-banks to the field of sequence design. We introduce a new generator/correlator algorithm for sequences in standard and non-standard QAM constellations that is based on this equivalence. Both rectangular and hexagonal constellations are considered and the cardinality of the generated set of unique complementary sequences is either determined or estimated for a number of important cases. We show, in the case of the standard 16-QAM constellation, that the paraunitary algorithm generates the same number of sequences as the published algorithms based on generalized Boolean functions. In the case of 64-QAM, the proposed algorithm generates more sequences than known algorithms. We introduce an algorithm for generating 256-QAM sequences and derive a tight upper bound on the number of generated sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Golay, M.J.E.: Complementary series. IRE Trans. Inf. Theory 7, 82–87 (1961)

    Article  MathSciNet  Google Scholar 

  2. Budišin, S.Z.: Efficient pulse compressor for Golay complementary sequences. Electron. Lett. 27(3), 219–220 (1991)

    Article  Google Scholar 

  3. Budišin, S.Z.: New complementary pairs of sequences. Electron. Lett. 26(13), 881–883 (1990)

    Article  Google Scholar 

  4. Budišin, S.Z.: New multilevel complementary pairs of sequences. Electron. Lett. 26(22), 1861–1863 (1990)

    Article  Google Scholar 

  5. Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory 45(7), 2397–2417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chan, V.C., Venkataramani, R., Tarokh, V.: A new construction of 16-QAM Golay complementary sequences. IEEE Trans. Inf. Theory 49(11), 2953–2959 (2003)

    Article  Google Scholar 

  7. Chang, C.Y., Li, Y., Hirata, J.: New 64-QAM Golay complementary sequences. IEEE Trans. Inf. Theory 56(5), 2479–2485 (2010)

    Article  MathSciNet  Google Scholar 

  8. Candan, C.: Derivation of length extension formulas for complementary sets of sequences using orthogonal filter banks. Electron. Lett. 42(24), 1427–1428 (2006)

    Article  Google Scholar 

  9. Budišin, S.Z.: Golay kernel 10 decomposition. Electron. Lett. 47(15), 853–855 (2011)

    Article  Google Scholar 

  10. Vaidyanathan, P.P.: Multi-Rate Systems and Filter Banks. Prentice Hall (1993)

  11. Phoong, S.M., Chang, K.Y.: Antipodal paraunitary matrices and their applications to OFDM systems. IEEE Trans. Signal Process. 53(4), 1374–1386 (2005)

    Article  MathSciNet  Google Scholar 

  12. Budišin, S.Z., Spasojević, P.: Filter Bank Representation of Complementary Sequence Pairs, Allerton Conference on Communication, Control, and Computing, Monticello, IL October 1–5, (2012)

  13. Li, Y., Chu, W.B.: More Golay sequences. IEEE Trans. Inf. Theory 51(3), 1141–1145 (2005)

    Article  MathSciNet  Google Scholar 

  14. Fiedler, F., Jedwab, J., Wiebe, A.: A new source of seed pairs for Golay sequences of length 2^m. J. Comb. Theory Ser. A 117(5), 589–597 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Borwein, P., Ferguson, R.: A complete description of Golay pairs for lengths up to 100. Math. Comput. 73(246), 967–985 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jaugegui, S.: Complementary sequences of length 26. IEEE Trans. Inf. Theory 8(4), 323 (1962)

    Google Scholar 

  17. Gibson, R.G., Jedwab, J.: Quaternary Golay sequence pairs II: odd length. Des. Codes Crypt. 59, 147–157 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Forney Jr., G., Gallager, R., Lang, G., Longstaff, F., Qureshi, S.: Efficient modulation for band-limited channels. IEEE J. Sel. Areas Commun. 2(5), 632–647 (1984)

    Article  Google Scholar 

  19. Li, Y.: A construction of general QAM Golay complementary sequences. IEEE Trans. Inf. Theory 56(11), 5765–5771 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the anonymous reviewers for insightful and detailed comments that helped in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Budišin.

Appendices

Appendix A

Here we prove that the decomposition algorithm shortens a pair of sequences by 1. We consider the transformation (23):

$$ \left[\begin{array}{l}A\prime \left({Z}^{-1}\right)\hfill \\ {}B\prime \left({Z}^{-1}\right)\hfill \end{array}\right]=\left[\begin{array}{ll}1\hfill & 0\hfill \\ {}0\hfill & Z\hfill \end{array}\right]\cdot \left[\begin{array}{ll}1\hfill & -\varOmega \hfill \\ {}{\varOmega}^{*}\hfill & 1\hfill \end{array}\right]\cdot \left[\begin{array}{l}A\left({Z}^{-1}\right)\hfill \\ {}B\left({Z}^{-1}\right)\hfill \end{array}\right] $$
(62)

where a and b are complementary sequences of length L represented by their Z transforms A(Z −1) and B(Z −1) and Ω = −b *(0)/a *(0). As the sequences are complementary: R a (L−1) + R b (L−1) = 0 so a *(0)·a(L−1) + a *(0)·a(L−1) = 0 and finally Ω = −b *(0)/a *(0) = a(L−1)/b(L−1)

We can write the transformed complementary pair as:

$$ \left[\begin{array}{l}A\prime \left({Z}^{-1}\right)\hfill \\ {}B\prime \left({Z}^{-1}\right)\hfill \end{array}\right]=\left[\begin{array}{l}A\left({Z}^{-1}\right)-B\left({Z}^{-1}\right)\cdot a\left(L-1\right)/b\left(L-1\right)\hfill \\ {}Z\cdot A\left({Z}^{-1}\right)\cdot {a}^{*}\left(L-1\right)/{b}^{*}\left(L-1\right)+Z\cdot B\left({Z}^{-1}\right)\hfill \end{array}\right] $$
(63)

We first determine A′(Z −1):

$$ \begin{array}{c}\hfill A\prime ={\displaystyle \sum_{n=0}^{L-1}a(n)\cdot {Z}^{-\mathrm{n}}-{\displaystyle \sum_{n=0}^{L-1}b(n)\cdot a\left(L-1\right)/b\left(L-1\right)\cdot {Z}^{-\mathrm{n}}}}\hfill \\ {}\hfill ={\displaystyle \sum_{n=0}^{L-1}\left(a(n)-b(n)\cdot a\left(L-1\right)/b\left(L-1\right)\right)\cdot {Z}^{-\mathrm{n}}={\displaystyle \sum_{n=0}^{L-2}\left(a(n)\cdot b(n)\cdot a\left(L-1\right)/b\left(L-1\right)\right)\cdot {Z}^{-\mathrm{n}}}}\hfill \end{array} $$
(64)

as (a(L−1)−b(N−1)·a(L−1)/b(L−1))·Z L+1 = 0 so the length of the a′ sequence is L−1. In a similar way:

$$ B\prime ={\displaystyle \sum_{n=0}^{L-1}\left(a(n)\cdot {a}^{*}\left(L-1\right)/{b}^{*}\left(L-1\right)+b(n)\right)\cdot {Z}^{-\mathrm{n}+1}={\displaystyle \sum_{n=1}^{L-1}\left(a(n)\cdot {a}^{*}\left(L-1\right)/{b}^{*}\left(L-1\right)+b(n)\right)\cdot {Z}^{-\mathrm{n}+1}}} $$
(65)

(a(0)·a *(L−1)/b *(L−1) + b(0))·Z n = 0 because (a(0)·a *(L−1) + b(0)·b(L−1) = 0 from (9) and so

$$ B\prime ={\displaystyle \sum_{n=0}^{L-2}\left\{a\left(n+1\right)\cdot {a}^{*}\left(L-1\right)/{b}^{*}\left(L-1\right)+b\left(n+1\right)\right\}\cdot {Z}^{-n}} $$
(66)

which represents a sequence of length L−1.

Appendix B

Here we prove that the standard algorithm produces no overlapping of polynomials thus does not require any additions in the generating process. Let us consider the generating matrix:

$$ {\mathbf{\mathcal{M}}}_N\left({Z}^{-1}\right)={\boldsymbol{U}}_N\cdot {\boldsymbol{D}}^{P_N}\cdot {\boldsymbol{U}}_{N-1}\cdot {\boldsymbol{D}}^{P_{N-1}}\dots {\boldsymbol{U}}_1\cdot {\boldsymbol{D}}^{P_1}\cdot {\boldsymbol{U}}_0 $$
(67)

where U m are wide sense unitary matrices of the form \( \left[\begin{array}{ll}{C}_m\hfill & -{S}_m^{*}\hfill \\ {}{S}_m\hfill & {C}_m^{*}\hfill \end{array}\right],\boldsymbol{D}=\left[\begin{array}{ll}1\hfill & 0\hfill \\ {}0\hfill & {Z}^{-1}\hfill \end{array}\right] \) and [P 1, P 2, …, P N ] are Standard delays. Its recursive form is:

$$ \begin{array}{l}{\mathbf{\mathcal{M}}}_0\left({Z}^{-1}\right)={\boldsymbol{U}}_0\hfill \\ {}{\mathbf{\mathcal{M}}}_m\left({Z}^{-1}\right)={\boldsymbol{U}}_m\cdot {\boldsymbol{D}}^{P_m}\cdot {\mathbf{\mathcal{M}}}_{m-1}\left({Z}^{-1}\right)\hfill \end{array} $$
(68)

where \( {\boldsymbol{U}}_m\cdot {\boldsymbol{D}}^{P_m}=\left[\begin{array}{ll}{C}_m\hfill & -{S}_m^{*}{Z}^{-{P}_m}\hfill \\ {}{S}_m\hfill & {C}_m^{*}{Z}^{-{P}_m}\hfill \end{array}\right]=\left[\begin{array}{ll}{C}_m\hfill & 0\hfill \\ {}{S}_m\hfill & 0\hfill \end{array}\right]+\left[\begin{array}{ll}0\hfill & -{S}_m^{*}\hfill \\ {}0\hfill & {C}_m^{*}\hfill \end{array}\right]\cdot {Z}^{-{P}_m}={\boldsymbol{\varTheta}}_m+{\boldsymbol{\varPhi}}_m\cdot {Z}^{-{P}_m} \) and \( {\boldsymbol{\varTheta}}_m=\left[\begin{array}{ll}{C}_m\hfill & 0\hfill \\ {}{S}_m\hfill & 0\hfill \end{array}\right]\kern0.5em \mathrm{and}\kern0.5em {\boldsymbol{\varPhi}}_m=\left[\begin{array}{ll}0\hfill & -{S}_m^{*}\hfill \\ {}0\hfill & {C}_m^{*}\hfill \end{array}\right] \). Hence:

$$ {\mathbf{\mathcal{M}}}_m\left({Z}^{-1}\right)={\displaystyle \prod_{k=m}^1\left({\boldsymbol{\varTheta}}_k+{\boldsymbol{\varPhi}}_k\cdot {Z}^{-{P}_k}\right)\cdot {\boldsymbol{U}}_0={\displaystyle \sum_{i=1}^{2^m}{\boldsymbol{\varPsi}}_{L_i}{Z}^{-{L}_i}}} $$
(69)

(69) is a product of m binomial elements. Each of its 2m expansion terms is an m-element product where each element involves the first or the second binomial term. Here,

$$ {L}_i={\displaystyle \sum_{k=1}^m{\beta}_{ki}{P}_k} $$

where β ki  = 1 when the second binomial term is the k-th product element of the i-th term in (65), otherwise β ki  = 0, for i = 1, …, 2m. In fact, L i is a unique number with [β 1i , β 2i , …, β mi ] being its binary representation in terms of the binary powers in [P 1, P 2, …, P m ]. The next iteration

$$ {\mathbf{\mathcal{M}}}_{m+1}\left({Z}^{-1}\right)={\boldsymbol{\varTheta}}_{m+1}\cdot {\mathbf{\mathcal{M}}}_m\left({Z}^{-1}\right)+{\boldsymbol{\varPhi}}_{m+1}\cdot {\mathbf{\mathcal{M}}}_m\left({Z}^{-1}\right)\cdot {Z}^{-{P}_{m+1}} $$
(70)

always adds different powers of Z −1 to \( {\mathbf{\mathcal{M}}}_m\left({Z}^{-1}\right) \) as explained next. Note that

$$ {\mathbf{\mathcal{M}}}_m\left({Z}^{-1}\right)\cdot {Z}^{-{P}_{m+1}}={\displaystyle \sum_{i=1}^{2^m}{\boldsymbol{\varPsi}}_{L_i}{Z}^{-{L}_i-{P}_{m+1}}} $$
(71)

does not share any powers of Z −1 with \( {\mathbf{\mathcal{M}}}_m\left({Z}^{-1}\right) \). Since P m+1 is absent from [P 1, P 2, …, P m ]. its corresponding binary expansion element of L i is zero. On the other hand, the polynomial in (71) has exponents of the form L i + P m+1, which are always different from L i . Hence, the addition in (70) results in a union of polynomial terms that corresponds to interleaving of sequences elements in the time domain. Consequently, we have established that the sum of the delayed and the original pair corresponds to interleaving of sequences, without additions.

Note also that at iteration m:

$$ {\mathbf{\mathcal{M}}}_m\left({Z}^{-1}\right)=\left[\begin{array}{ll}{A}_m\left({Z}^{-1}\right)\hfill & -{\left\{{B}_m^R(Z)\right\}}^{*}\hfill \\ {}{B}_m\left({Z}^{-1}\right)\hfill & {\left\{{A}_m^R(Z)\right\}}^{*}\hfill \end{array}\right]. $$

It follows that

$$ {\boldsymbol{\varTheta}}_{m+1}\cdot {\mathbf{\mathcal{M}}}_m\left({Z}^{-1}\right)=\left[\begin{array}{ll}{C}_m{A}_m\left({Z}^{-1}\right)\hfill & -{C}_m{\left\{{B}_m^R(Z)\right\}}^{*}\hfill \\ {}{S}_m{A}_m\left({Z}^{-1}\right)\hfill & -{S}_m{\left\{{B}_m^R(Z)\right\}}^{*}\hfill \end{array}\right]\kern0.5em \mathrm{and}\kern0.5em {\boldsymbol{\varPhi}}_{m+1}\cdot {\mathbf{\mathcal{M}}}_m\left({Z}^{-1}\right)=\left[\begin{array}{ll}-{S}_m^{*}{B}_m\left({Z}^{-1}\right)\hfill & -{S}_m^{*}{\left\{{A}_m^R(Z)\right\}}^{*}\hfill \\ {}{C}_m^{*}{B}_m\left({Z}^{-1}\right)\hfill & {C}_m^{*}{\left\{{A}_m^R(Z)\right\}}^{*}\hfill \end{array}\right] $$

also require no additions but only multiplications. In fact, in the case of polyphase sequences, each term requires a phase shift only, instead of a multiplication.

Appendix C

Here we determine the canonic form for the PU QAM sequences with one QAM matrix using the following steps:

  1. 1.

    First we represent the QAM-U matrix as a product of an omega matrix and a diagonal matrix:

    $$ \boldsymbol{U}=\left[\begin{array}{ll}C\hfill & -{S}^{*}\hfill \\ {}S\hfill & {C}^{*}\hfill \end{array}\right]=\left[\begin{array}{ll}1\hfill & -{S}^{*}/{C}^{*}\hfill \\ {}S/C\hfill & 1\hfill \end{array}\right]\left[\begin{array}{ll}C\hfill & 0\hfill \\ {}0\hfill & {C}^{*}\hfill \end{array}\right]=\boldsymbol{\varOmega} \cdot \boldsymbol{C} $$
    (72)
  2. 2.

    Next we apply the quasi-commutativity property:

    $$ \boldsymbol{C}\cdot \boldsymbol{\varOmega} =\left[\begin{array}{ll}C\hfill & 0\hfill \\ {}0\hfill & {C}^{*}\hfill \end{array}\right]\left[\begin{array}{ll}1\hfill & -{\varOmega}^{*}\hfill \\ {}\varOmega \hfill & 1\hfill \end{array}\right]=\left[\begin{array}{ll}1\hfill & -{\left(\varOmega \cdot {C}^{*}/C\right)}^{*}\hfill \\ {}\varOmega \cdot {C}^{*}/C\hfill & 1\hfill \end{array}\right]\left[\begin{array}{ll}C\hfill & 0\hfill \\ {}0\hfill & {C}^{*}\hfill \end{array}\right]=\left[\begin{array}{ll}1\hfill & -{\varOmega}_1^{*}\hfill \\ {}{\varOmega}_1\hfill & 1\hfill \end{array}\right]\left[\begin{array}{ll}C\hfill & 0\hfill \\ {}0\hfill & {C}^{*}\hfill \end{array}\right]={\boldsymbol{\varOmega}}_{\mathbf{1}}\cdot \boldsymbol{C} $$
    (73)

    (where \( {\varOmega}_1 \)Ω1 = \( \varOmega \cdot \)Ω⋅C */C) in order to move the C matrix to the right side of a PU product past the omega matrix.

  3. 3.

    We use the fact that diagonal matrices are commutative to move the C matrix to the right past the D matrix:

    $$ \boldsymbol{C}\cdot \boldsymbol{D}=\boldsymbol{D}\cdot \boldsymbol{C}\kern0.5em \mathrm{or}\kern0.5em \left[\begin{array}{ll}C\hfill & 0\hfill \\ {}0\hfill & {C}^{*}\hfill \end{array}\right]\cdot \left[\begin{array}{ll}1\hfill & 0\hfill \\ {}0\hfill & {Z}^{-1}\hfill \end{array}\right]=\left[\begin{array}{ll}1\hfill & 0\hfill \\ {}0\hfill & {Z}^{-1}\hfill \end{array}\right]\cdot \left[\begin{array}{ll}C\hfill & 0\hfill \\ {}0\hfill & {C}^{*}\hfill \end{array}\right] $$
    (74)
  4. 4.

    We repeat steps 2 and 3 until C appear at the right side of the PU product in (37). We can note that the:

    $$ {\varOmega}_K=S/C\kern0.5em \mathrm{and}\kern0.5em {\varOmega}_n={C}^{*}/C\cdot {w}_n $$
    (75)

Next, we give a detailed derivation of the canonic form:

$$ {\boldsymbol{X}}_{(QAM)}={\boldsymbol{G}}_{(QAM)}\left({Z}^{-1}\right)\cdot \left[\begin{array}{l}1\hfill \\ {}0\hfill \end{array}\right]=w\cdot {\boldsymbol{W}}_N\cdot {\boldsymbol{D}}^{2^{P_N}}\cdot {\boldsymbol{W}}_{N-1}\cdot {\boldsymbol{D}}^{2^{P_{N-1}}}\cdot \dots \cdot {\boldsymbol{U}}_{(K)}\cdot \dots \cdot {\boldsymbol{W}}_1\cdot {\boldsymbol{D}}^{2^{P_1}}\cdot {\boldsymbol{W}}_0\cdot \left[\begin{array}{l}1\hfill \\ {}0\hfill \end{array}\right] $$
(76)

Where \( {\boldsymbol{U}}_{(K)}=\left[\begin{array}{ll}C\hfill & {w}_K\cdot S\hfill \\ {}-\left({w}_K\cdot S\right)\hfill & {C}^{*}\hfill \end{array}\right] \) and K indicates the position of the U (K) matrix in the product. In fact, it replaces the W K matrix at that position.

$$ \begin{array}{c}\hfill {\boldsymbol{X}}_{(QAM)}=w\cdot {\boldsymbol{W}}_N\cdot {\boldsymbol{D}}^{2^{P_N}}\cdot \dots \cdot \left[\begin{array}{ll}1\hfill & -{w}_K^{*}{S}^{*}/{C}^{*}\hfill \\ {}{w}_KS/C\hfill & 1\hfill \end{array}\right]\cdot \left[\begin{array}{ll}C\hfill & 0\hfill \\ {}0\hfill & {C}^{*}\hfill \end{array}\right]\cdot {\boldsymbol{D}}^{2^{P_{K*1}}}\cdot {\boldsymbol{W}}_{K-1}\cdot \dots \cdot {\boldsymbol{D}}^{2^{P_1}}\cdot {\boldsymbol{W}}_0\cdot \left[\begin{array}{l}1\hfill \\ {}0\hfill \end{array}\right]=\hfill \\ {}\hfill {\boldsymbol{X}}_{(QAM)}=w\cdot {\boldsymbol{W}}_N\cdot {\boldsymbol{D}}^{2^{P_N}}\cdot \dots \cdot \left[\begin{array}{ll}1\hfill & -{w}_K^{*}{S}^{*}/{C}^{*}\hfill \\ {}{w}_KS/C\hfill & 1\hfill \end{array}\right]\cdot {\boldsymbol{D}}^{2^{P_{K*1}}}\cdot \left[\begin{array}{ll}C\hfill & 0\hfill \\ {}0\hfill & {C}^{*}\hfill \end{array}\right]\cdot \left[\begin{array}{ll}1\hfill & -{w}_{K-1}^{*}\hfill \\ {}{w}_{K-1}\hfill & 1\hfill \end{array}\right]\cdot \dots \cdot {\boldsymbol{D}}^{2^{P_1}}\cdot {\boldsymbol{W}}_0\cdot \left[\begin{array}{l}1\hfill \\ {}0\hfill \end{array}\right]\hfill \\ {}\hfill {\boldsymbol{X}}_{(QAM)}=w\cdot {\boldsymbol{W}}_N\cdot {\boldsymbol{D}}^{2^{P_N}}\cdot \dots \cdot \left[\begin{array}{ll}1\hfill & -{w}_K^{*}{S}^{*}/{C}^{*}\hfill \\ {}{w}_KS/C\hfill & 1\hfill \end{array}\right]\cdot {\boldsymbol{D}}^{2^{P_{K*1}}}\cdot \left[\begin{array}{ll}1\hfill & -{\left({C}^{*}/C{w}_{K-1}\right)}^{*}\hfill \\ {}{C}^{*}/C{w}_{K-1}\hfill & 1\hfill \end{array}\right]\left[\begin{array}{ll}C\hfill & 0\hfill \\ {}0\hfill & {C}^{*}\hfill \end{array}\right]\cdot \dots \cdot {\boldsymbol{D}}^{2^{P_1}}\cdot {\boldsymbol{W}}_0\cdot \left[\begin{array}{l}1\hfill \\ {}0\hfill \end{array}\right]\hfill \end{array} $$

with a = S/C a β = C */C.

$$ \begin{array}{c}\hfill {\boldsymbol{X}}_{(QAM)}=w\cdot {\boldsymbol{W}}_N\cdot {\boldsymbol{D}}^{2^{P_N}}\cdot \dots \cdot \left[\begin{array}{ll}1\hfill & -{w}_K^{*}{\alpha}^{*}\hfill \\ {}{w}_K\alpha \hfill & 1\hfill \end{array}\right]\cdot {\boldsymbol{D}}^{2^{P_{K*1}}}\cdot \left[\begin{array}{ll}1\hfill & -{\left({w}_{K-1}\cdot \beta \right)}^{*}\hfill \\ {}{w}_{K-1}\cdot \beta \hfill & 1\hfill \end{array}\right]\cdot \left[\begin{array}{ll}C\hfill & 0\hfill \\ {}0\hfill & {C}^{*}\hfill \end{array}\right]\cdot \dots \cdot {\boldsymbol{D}}^{2^{P_1}}\cdot {\boldsymbol{W}}_0\cdot \left[\begin{array}{l}1\hfill \\ {}0\hfill \end{array}\right]\hfill \\ {}\hfill {\boldsymbol{X}}_{(QAM)}=w{\boldsymbol{W}}_N{\boldsymbol{D}}^{2^{P_N}}\dots \left[\begin{array}{ll}1\hfill & -{w}_K^{*}{\alpha}^{*}\hfill \\ {}{w}_K\alpha \hfill & 1\hfill \end{array}\right]{\boldsymbol{D}}^{2^{P_{K*1}}}\left[\begin{array}{ll}1\hfill & -{\left({w}_{K-1}\cdot \beta \right)}^{*}\hfill \\ {}{w}_{K-1}\cdot \beta \hfill & 1\hfill \end{array}\right]\dots {\boldsymbol{D}}^{2^{P_1}}\left[\begin{array}{ll}1\hfill & -{\left({w}_0\cdot \beta \right)}^{*}\hfill \\ {}{w}_0\cdot \beta \hfill & 1\hfill \end{array}\right]\left[\begin{array}{ll}C\hfill & 0\hfill \\ {}0\hfill & {C}^{*}\hfill \end{array}\right]\left[\begin{array}{l}1\hfill \\ {}0\hfill \end{array}\right]\hfill \\ {}\hfill {\boldsymbol{X}}_{(QAM)}=w\cdot C\cdot {\boldsymbol{W}}_N\cdot {\boldsymbol{D}}^{2^{P_N}}\dots \left[\begin{array}{ll}1\hfill & -{w}_K^{*}{\alpha}^{*}\hfill \\ {}{w}_K\alpha \hfill & 1\hfill \end{array}\right]{\boldsymbol{D}}^{2^{P_{K*1}}}\left[\begin{array}{ll}1\hfill & -{\left({w}_{K-1}\beta \right)}^{*}\hfill \\ {}{w}_{K-1}\beta \hfill & 1\hfill \end{array}\right]\dots {\boldsymbol{D}}^{2^{P_1}}\left[\begin{array}{ll}1\hfill & -{\left({w}_0\beta \right)}^{*}\hfill \\ {}{w}_0\beta \hfill & 1\hfill \end{array}\right]\cdot \left[\begin{array}{l}1\hfill \\ {}0\hfill \end{array}\right]\hfill \end{array} $$

Thus, the non-zero elements of the omega vector are:

$$ {\boldsymbol{\Omega}}_{(QAM)}=\left[\underset{K}{\underbrace{\beta {w}_0,\kern1em \beta {w}_1,\kern1em \dots, \kern1em \beta {w}_{K-1}}},\alpha {w}_K,\underset{N-K}{\underbrace{w_{K+1},\dots {w}_{N-1},\kern1em {w}_N}}\right) $$
(77)
$$ {\boldsymbol{\Omega}}_{(QAM)}=\left[\underset{K}{\underbrace{w_0{C}^{*}/C,{w}_1{C}^{*}/C,\dots, {w}_{K-1}{C}^{*}/C}},{w}_KS/C,\underset{N-K}{\underbrace{w_{K+1},\dots {w}_{N-1},{w}_N}}\right) $$
(78)

The canonic form of the QAM complementary sequences is defined by:

  1. 1.

    Multiplicative constant: w·C

  2. 2.

    Standard delays: [P 1, P 2, …, P N ]

  3. 3.

    Non-zero elements of the omega vector: Ω(QAM ) = [Ω S(0), Ω S(1), Ω S(2), …, Ω S(N)] according (31).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budišin, S.Z., Spasojević, P. Paraunitary generation/correlation of QAM complementary sequence pairs. Cryptogr. Commun. 6, 59–102 (2014). https://doi.org/10.1007/s12095-013-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-013-0087-9

Keywords

Navigation