Skip to main content
Log in

Repeated-root constacyclic codes of length t p s and their dual codes

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Constacyclic codes form an interesting family of error-correcting codes due to their rich algebraic structure, and are generalizations of cyclic and negacyclic codes. In this paper, we classify repeated-root constacyclic codes of length t p s over the finite field \(\mathbb {F}_{p^{m}}\) containing p m elements, where ≡ 1(mod 2), p are distinct primes and t, s, m are positive integers. Based upon this classification, we explicitly determine the algebraic structure of all repeated-root constacyclic codes of length t p s over \(\mathbb {F}_{p^{m}}\) and their dual codes in terms of generator polynomials. We also observe that self-dual cyclic (negacyclic) codes of length t p s over \(\mathbb {F}_{p^{m}}\) exist only when p = 2 and list all self-dual cyclic (negacyclic) codes of length t2s over \(\mathbb {F}_{2^{m}}\). We also determine all self-orthogonal cyclic and negacyclic codes of length t p s over \(\mathbb {F}_{p^{m}}\). To illustrate our results, we determine all constacyclic codes of length 175 over \(\mathbb {F}_{5}\) and all constacyclic codes of lengths 147 and 3087 over \(\mathbb {F}_{7}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostal, T.M.: Introduction to Analytic Number Theory. Springer (1976)

  2. Bakshi, G.K., Raka, M.: A class of constacyclic codes over a finite field. Finite Fields Appl. 18(2), 362–377 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bakshi, G.K., Raka, M.: Self-dual and self-orthogonal negacyclic codes of length 2p noverafinitefield. Finite Fields Appl. 19(1), 39–54 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berlekamp, E.R.: Algebraic Coding Theory. McGraw -Hill Book Company, New York (1968)

    MATH  Google Scholar 

  5. Blackford, T.: Negacyclic duadic codes. Finite Fields Appl. 14(4), 930–943 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, B., Fan, Y., Lin, L., Liu, H.: Constacyclic codes over finite fields. Finite Fields Appl. 18(6), 1217–1231 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dinh, H.Q.: Constacyclic codes of length \(p^{s \text {over} \mathbb {F}_{p^{m}} + u\mathbb {F}_{p^{m}}}\). J. Algebra 324(5), 940–950 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dinh, H.Q.: Repeated-root constacyclic codes of length 2p s. Finite Fields Appl. 18(1), 133–143 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dinh, H.Q.: Structure of repeated-root constacyclic codes of length 3p sandtheirduals. Discret. Math. 313(9), 983–991 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dinh, H.Q.: On repeated-root constacyclic codes of length 4p s. Asian-Eur. J. Math. 6(2013). doi:10.1142/S1793557113500204

  11. Dinh, H.Q., Lapez-Permouth, S.R., Szabo, S.: On the structure of cyclic and negacyclic codes over nite Chain rings Codes over Rings, e-Proc. of the CIMPA Summer School, pp 18–29, Turkey (2008)

  12. Guenda, K., Gulliver, T.A.: Self-dual repeated-root cyclic and negacyclic codes over finite fields. Proc. IEEE Int. Symp. Inform. Theory, 2904–2908 (2012)

  13. Jia, Y., Ling, S., Xing, C.: On self-dual cyclic codes over finite fields. IEEE Trans. Inform. Theory 57(4), 2243–2251 (2011)

    Article  MathSciNet  Google Scholar 

  14. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  15. Ling, S., Xing, C.: Coding theory - A first course. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A. Repeated-root constacyclic codes of length t p s and their dual codes. Cryptogr. Commun. 7, 229–255 (2015). https://doi.org/10.1007/s12095-014-0106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-014-0106-5

Keywords

Mathematics Subject Classification 2010