Abstract
Constacyclic codes form an interesting family of error-correcting codes due to their rich algebraic structure, and are generalizations of cyclic and negacyclic codes. In this paper, we classify repeated-root constacyclic codes of length ℓ t p s over the finite field \(\mathbb {F}_{p^{m}}\) containing p m elements, where ℓ ≡ 1(mod 2), p are distinct primes and t, s, m are positive integers. Based upon this classification, we explicitly determine the algebraic structure of all repeated-root constacyclic codes of length ℓ t p s over \(\mathbb {F}_{p^{m}}\) and their dual codes in terms of generator polynomials. We also observe that self-dual cyclic (negacyclic) codes of length ℓ t p s over \(\mathbb {F}_{p^{m}}\) exist only when p = 2 and list all self-dual cyclic (negacyclic) codes of length ℓ t2s over \(\mathbb {F}_{2^{m}}\). We also determine all self-orthogonal cyclic and negacyclic codes of length ℓ t p s over \(\mathbb {F}_{p^{m}}\). To illustrate our results, we determine all constacyclic codes of length 175 over \(\mathbb {F}_{5}\) and all constacyclic codes of lengths 147 and 3087 over \(\mathbb {F}_{7}\).
Similar content being viewed by others
References
Apostal, T.M.: Introduction to Analytic Number Theory. Springer (1976)
Bakshi, G.K., Raka, M.: A class of constacyclic codes over a finite field. Finite Fields Appl. 18(2), 362–377 (2012)
Bakshi, G.K., Raka, M.: Self-dual and self-orthogonal negacyclic codes of length 2p noverafinitefield. Finite Fields Appl. 19(1), 39–54 (2013)
Berlekamp, E.R.: Algebraic Coding Theory. McGraw -Hill Book Company, New York (1968)
Blackford, T.: Negacyclic duadic codes. Finite Fields Appl. 14(4), 930–943 (2008)
Chen, B., Fan, Y., Lin, L., Liu, H.: Constacyclic codes over finite fields. Finite Fields Appl. 18(6), 1217–1231 (2012)
Dinh, H.Q.: Constacyclic codes of length \(p^{s \text {over} \mathbb {F}_{p^{m}} + u\mathbb {F}_{p^{m}}}\). J. Algebra 324(5), 940–950 (2010)
Dinh, H.Q.: Repeated-root constacyclic codes of length 2p s. Finite Fields Appl. 18(1), 133–143 (2012)
Dinh, H.Q.: Structure of repeated-root constacyclic codes of length 3p sandtheirduals. Discret. Math. 313(9), 983–991 (2013)
Dinh, H.Q.: On repeated-root constacyclic codes of length 4p s. Asian-Eur. J. Math. 6(2013). doi:10.1142/S1793557113500204
Dinh, H.Q., Lapez-Permouth, S.R., Szabo, S.: On the structure of cyclic and negacyclic codes over nite Chain rings Codes over Rings, e-Proc. of the CIMPA Summer School, pp 18–29, Turkey (2008)
Guenda, K., Gulliver, T.A.: Self-dual repeated-root cyclic and negacyclic codes over finite fields. Proc. IEEE Int. Symp. Inform. Theory, 2904–2908 (2012)
Jia, Y., Ling, S., Xing, C.: On self-dual cyclic codes over finite fields. IEEE Trans. Inform. Theory 57(4), 2243–2251 (2011)
Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge University Press, Cambridge (2008)
Ling, S., Xing, C.: Coding theory - A first course. Cambridge University Press, Cambridge (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sharma, A. Repeated-root constacyclic codes of length ℓ t p s and their dual codes. Cryptogr. Commun. 7, 229–255 (2015). https://doi.org/10.1007/s12095-014-0106-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-014-0106-5