Abstract
We present q new asymptotically optimal families of doubly periodic arrays with ideal auto and cross correlation constraints, derived from the Moreno-Maric construction for frequency hopping applications. These new families possess the same properties that make the Moreno-Maric construction suitable for communications systems and digital watermarking, size (q+1)×(q+1), weight ω=q+1, family size q−2, and correlation 2, where q is a power of a prime. These new families are asymptotically optimal.



Similar content being viewed by others
References
Bömer, L., Antweiler, M., Schotten, H.: Quadratic residue arrays. Frequenz 47(7–8), 190–196 (1993)
Chung, F.R.K., Salehi, J.A., Wei, V.K.-W.: Correction to optical orthogonal codes: Design, analysis, and applications (may 89 595–604). IEEE Trans. Inf. Theory 38(4), 1429 (1992)
Chung, H., Vijay Kumar, P.: Optical orthogonal codes-new bounds and an optimal construction. IEEE Trans. Inf. Theory 36(4), 866 (1990)
Costas, J.P.: Medium Constraints on Sonar Design and Performance, pp. 68A–68L. FASCON Convention Record (1975)
Golomb, S.W., Taylor, H.: Two-dimensional syncronization patterns for minimum ambiguity. IEEE Trans. Inf. Theory IT–28, 600–604 (1982)
Gong, G.: Constructions of multiple shift-distinct signal sets with low correlation. In: IEEE International Symposium on Information Theory, ISIT, pp 2306–2310 (2007)
Johnson, S.M.: A new upper bound for error-correcting codes. IEEE Trans. Inf. Theory IT(8), 203–207 (1962)
Kim, S., Yu, K., Park, N.: A new family of space/wavelength/time spread three dimesnional optical code for OCDMA networks. J. Lightwave Technol. 18(4), 502–511 (2000)
Mendez, A.J., Gagliardi, R.M.: Code division multiple access (CDMA) enhancement of wavelength division multiple access (wdm) systems. In: IEEE International Conference Communication, pp 271–276, Seatle, WA (1995)
Milewski, A.: Periodic sequences with optimal properties for channel estimation and fast start-up equalization. IBM J. Res. Dev. 27(5), 426–431 (1983)
Moreno, O., Games, R.A., Taylor, H.: Sonar sequences from Costas arrays and the best known sonar sequences with up to 100 symbols. IEEE Trans. Inf. Theory 39, 1985–1987 (November 1993)
Moreno, O., Maric, S.V.: A new family of frequency-hop codes. IEEE Trans. Commun. 48(8), 1241–1244 (2000)
Moreno, O., Ortiz Ubarri, J.: Group permutable constant weight codes. In: IEEE Proceedings Information Theory Workshop, Dublin, Ireland (2010)
Nguyen, Q.A., Gyorfi, L., Massey, J.L.: Construction of binary constant-weight cyclic codes and cyclically permutable codes. IEEE Trans. Inf. Theory 38(3), 940–949 (1992)
Ortiz-Ubarri, J., Moreno, O., Tirkel, A.: Three-dimensional periodic optical orthogonal code for OCDMA systems. In: IEEE Information Theory Workshop (ITW), pp 170–174 (2011)
Ortiz-Ubarri, J., Moreno, O., Tirkel, A.Z., Arce-Nazario, R., Golomb, S.W.: Algebraic symmetries of generic (m+1)-dimensional periodic Costas arrays, Vol. 59 (2013)
Park, E., Mendez, A.J, Garmire, E.M.: Temporal/spatial optical CDMA networks: Design, demonstration and comparison with temporal network. IEEE Photon. Technol. Letter 4, 1160–1162 (1992)
Schotten, H.D., Lüke, H.D.: New perfect and w-cyclic-perfect sequences. In: Proceedings 1996 IEEE International Symposium on Information Theory, vol. 12 (1996)
Tirkel, A.Z., Rankin, G.A., van Schyndel, R.M., Ho, W.J., Mee, N.R.A., Osborne, C.F.: Electronic water mark. In: Digital Image Computing, Technology and Applications (DICTA’93), pp 666–673, Macquarie University, Sydney (1993)
Andrew Tirkel. Personal communication
Tirkel, A., Hall, T.: New matrices with good auto and cross-correlation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89–A(9), 2315–2321 (2006)
Acknowledgments
The author would like to thank Dr. Oscar Moreno, Dr. Andrew Tirkel, Dr. Guang Gong, Dr. Ivelisse Rubio, and the reviewers for their useful comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ortiz-Ubarri, J. New families of asymptotically optimal doubly periodic arrays with ideal correlation constraints. Cryptogr. Commun. 7, 403–414 (2015). https://doi.org/10.1007/s12095-015-0122-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-015-0122-0