Abstract
A logarithmic signature for a finite group G is a sequence [A 1,⋯ ,A s ] of subsets of G such that every element g∈G can be uniquely written in the form g=g 1⋯g s , where g i ∈A i , 1≤i≤s. The aim of this paper is proving the existence of an MLS for the Suzuki simple groups S z(22m+1), m>1, when 22m+1+2m+1+1 or 22m+1−2m+1+1 are primes. The existence of an MLS for untwisted group G 2(4) and the sporadic Suzuki group S u z are also proved. As a consequence of our results, we prove that the simple groups
have an MLS.
Similar content being viewed by others
References
Abbott, R., Bray, J., Linton, S., Nickerson, S., Norton, S., Parker, R., Suleiman, I., Tripp, J., Walsh, P., Wilson, R.: ATLAS of Finite Group Representations – Version 3, (http://brauer.maths.qmul.ac.uk/Atlas/v3/)
Babai, L., Pàlfy, P.P., Saxl, J.: On the number of p regular elements in finite simple groups. LMS J. Comput. Math. 12, 82–119 (2009)
Dixon, J.D., Mortimer, B.: Permutation Groups, Graduate Texts in Mathematics, vol. 163. Springer-Verlag, New York (1996)
González Vasco, M.I., Rötteler, M., Steinwandt, R.: On minimal length factorizations of finite groups. Exp. Math. 12(1), 1–12 (2003)
González Vasco, M.I., Steinwandt, R.: Obstacles in two public key cryptosystems based on group factorizations. Tatra Mt. Math. Publ. 25, 23–37 (2002)
Hartley, R.W.: Determination of the ternary collineation groups whose coefficients lie in the G F(2n). Ann. Math. 27, 140–158 (1926)
Holmes, P.E.: On minimal factorisations of sporadic groups. Exp. Math. 13(4), 435–440 (2004)
Hong, H., Wang, L., Yang, Y., Ahmad, H.: All exceptional groups of Lie type have minimal logarithmic signatures. Appl. Aalgebra Eng. Commun. Comput. doi:10.1007/s00200-014-0226-3
Hong, H., Wang, L., Yang, Y.: Minimal logarithmic signatures for the unitary group U n (q). Des. Codes Cryptogr. doi:10.1007/s10623-014-9996-7
Huppert, B.: Endliche Gruppen I. Springer-Verlag, Berlin (1967)
Lempken, W., van Trung, T.: On minimal logarithmic signatures of finite groups. Exp. Math. 14(3), 257–269 (2005)
Liu, W.: Finite linear spaces admitting a projective group P S U(3,q) with q even. Linear Algebra Appl 374, 291–305 (2003)
Magliveras, S.S.: A cryptosystem from logarithmic signatures of finite groups, In Proceedings of the 29th Midwest Symposium on Circuits and Systems, pp 972–975. Elsevier Publishing Company, Amsterdam (1986)
Magliveras, S.S., Memon, N.D.: Algebraic properties of cryptosystem PGM. J. Cryptol. 5, 167–183 (1992)
Magliveras, S.S., Memon, N.D.: Properties of cryptosystem PGM, in Advances in Cryptology Crypto ’89, Lecture Notes in Computer Science, vol. 435, pp 447–460. Springer-Verlag, Berlin (1989)
Magliveras, S.S., Memon, N.D.: Complexity tests for cryptosystem PGM. Congr. Numer. 79, 61–68 (1990)
Magliveras, S.S., Oberg, B.A., Surkan, A.J.: A new random number generator from permutation groups. Rend. Sem. Mat. Fis. Milano 54, 203–223 (1985)
Magliveras, S.S., Stinson, D.R., van Trung, T.: New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15, 167–183 (2002)
Magliveras, S.S. Secret- and Public-key Cryptosystems from Group Factorizations. In: Nemoga, K., Grošek, O. (eds.) : Bratislava: Mathematical Institute,Slovak Academy of Sciences, vol. 25, p 2002. Tatra Mountains Mathematical Publications
Lempken, W., van Trung, T., Magliveras, S.S., Wei, W.: A public key cryptosystem based on non-abelian finite groups. J. Cryptol. 22, 62–74 (2009)
Singhi, N.: The Existence of Minimal Logarithmic Signatures for Classical Groups, PhD Thesis,Florida Atlantic University (2011)
Singhi, N.: On the Minimal Logarithmic Signature Conjecture, PhD Thesis, Florida Atlantic University (2011)
Singhi, N., Singhi, N.: Minimal logarithmic signatures for classical groups. Des. Codes Cryptogr. 60(2), 183–195 (2011)
Singhi, N., Singhi, N., Magliveras, S.: Minimal logarithmic signatures for finite groups of Lie type. Des. Codes Cryptogr. 55(2-3), 243–260 (2010)
Suzuki, M.: On a class of doubly transitive groups. Annals Math 75(1), 105–145 (1962)
Svaba, P., van Trung, T., Wolf, P.: Logarithmic signatures for abelian groups and their factorization. Tatra Mt. Math. Publ. 57, 21–33 (2013)
The GAP Team: GAP – Groups, Algorithms, and Programming, Version 4.5.5, 2012, (http://www.gap-system.org)
Acknowledgments
The authors are indebted to the referees for their suggestions and helpful remarks leaded us to rearrange the paper. The research of the first and second authors are partially supported by INSF under grant number 93010006.
Author information
Authors and Affiliations
Corresponding author
Additional information
A. R. Ashrafi holds a PhD degree at University of Kashan.
A. R. Rahimipour holds a PhD degree at University of Qom.
A. Gholami holds a PhD degree at University of Qom.
Rights and permissions
About this article
Cite this article
Rahimipour, A.R., Ashrafi, A.R. & Gholami, A. The existence of minimal logarithmic signatures for the sporadic Suzuki and simple Suzuki groups. Cryptogr. Commun. 7, 535–542 (2015). https://doi.org/10.1007/s12095-015-0129-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-015-0129-6