Skip to main content
Log in

The existence of minimal logarithmic signatures for the sporadic Suzuki and simple Suzuki groups

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

A logarithmic signature for a finite group G is a sequence [A 1,⋯ ,A s ] of subsets of G such that every element gG can be uniquely written in the form g=g 1g s , where g i A i , 1≤is. The aim of this paper is proving the existence of an MLS for the Suzuki simple groups S z(22m+1), m>1, when 22m+1+2m+1+1 or 22m+1−2m+1+1 are primes. The existence of an MLS for untwisted group G 2(4) and the sporadic Suzuki group S u z are also proved. As a consequence of our results, we prove that the simple groups

Table 1

have an MLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, R., Bray, J., Linton, S., Nickerson, S., Norton, S., Parker, R., Suleiman, I., Tripp, J., Walsh, P., Wilson, R.: ATLAS of Finite Group Representations – Version 3, (http://brauer.maths.qmul.ac.uk/Atlas/v3/)

  2. Babai, L., Pàlfy, P.P., Saxl, J.: On the number of p regular elements in finite simple groups. LMS J. Comput. Math. 12, 82–119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dixon, J.D., Mortimer, B.: Permutation Groups, Graduate Texts in Mathematics, vol. 163. Springer-Verlag, New York (1996)

    Google Scholar 

  4. González Vasco, M.I., Rötteler, M., Steinwandt, R.: On minimal length factorizations of finite groups. Exp. Math. 12(1), 1–12 (2003)

    Article  MATH  Google Scholar 

  5. González Vasco, M.I., Steinwandt, R.: Obstacles in two public key cryptosystems based on group factorizations. Tatra Mt. Math. Publ. 25, 23–37 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Hartley, R.W.: Determination of the ternary collineation groups whose coefficients lie in the G F(2n). Ann. Math. 27, 140–158 (1926)

    Article  MathSciNet  Google Scholar 

  7. Holmes, P.E.: On minimal factorisations of sporadic groups. Exp. Math. 13(4), 435–440 (2004)

    Article  MATH  Google Scholar 

  8. Hong, H., Wang, L., Yang, Y., Ahmad, H.: All exceptional groups of Lie type have minimal logarithmic signatures. Appl. Aalgebra Eng. Commun. Comput. doi:10.1007/s00200-014-0226-3

  9. Hong, H., Wang, L., Yang, Y.: Minimal logarithmic signatures for the unitary group U n (q). Des. Codes Cryptogr. doi:10.1007/s10623-014-9996-7

  10. Huppert, B.: Endliche Gruppen I. Springer-Verlag, Berlin (1967)

    Book  MATH  Google Scholar 

  11. Lempken, W., van Trung, T.: On minimal logarithmic signatures of finite groups. Exp. Math. 14(3), 257–269 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, W.: Finite linear spaces admitting a projective group P S U(3,q) with q even. Linear Algebra Appl 374, 291–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Magliveras, S.S.: A cryptosystem from logarithmic signatures of finite groups, In Proceedings of the 29th Midwest Symposium on Circuits and Systems, pp 972–975. Elsevier Publishing Company, Amsterdam (1986)

    Google Scholar 

  14. Magliveras, S.S., Memon, N.D.: Algebraic properties of cryptosystem PGM. J. Cryptol. 5, 167–183 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Magliveras, S.S., Memon, N.D.: Properties of cryptosystem PGM, in Advances in Cryptology Crypto ’89, Lecture Notes in Computer Science, vol. 435, pp 447–460. Springer-Verlag, Berlin (1989)

    Google Scholar 

  16. Magliveras, S.S., Memon, N.D.: Complexity tests for cryptosystem PGM. Congr. Numer. 79, 61–68 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Magliveras, S.S., Oberg, B.A., Surkan, A.J.: A new random number generator from permutation groups. Rend. Sem. Mat. Fis. Milano 54, 203–223 (1985)

    Article  MathSciNet  Google Scholar 

  18. Magliveras, S.S., Stinson, D.R., van Trung, T.: New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15, 167–183 (2002)

    Article  MathSciNet  Google Scholar 

  19. Magliveras, S.S. Secret- and Public-key Cryptosystems from Group Factorizations. In: Nemoga, K., Grošek, O. (eds.) : Bratislava: Mathematical Institute,Slovak Academy of Sciences, vol. 25, p 2002. Tatra Mountains Mathematical Publications

  20. Lempken, W., van Trung, T., Magliveras, S.S., Wei, W.: A public key cryptosystem based on non-abelian finite groups. J. Cryptol. 22, 62–74 (2009)

    Article  MATH  Google Scholar 

  21. Singhi, N.: The Existence of Minimal Logarithmic Signatures for Classical Groups, PhD Thesis,Florida Atlantic University (2011)

  22. Singhi, N.: On the Minimal Logarithmic Signature Conjecture, PhD Thesis, Florida Atlantic University (2011)

  23. Singhi, N., Singhi, N.: Minimal logarithmic signatures for classical groups. Des. Codes Cryptogr. 60(2), 183–195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Singhi, N., Singhi, N., Magliveras, S.: Minimal logarithmic signatures for finite groups of Lie type. Des. Codes Cryptogr. 55(2-3), 243–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Suzuki, M.: On a class of doubly transitive groups. Annals Math 75(1), 105–145 (1962)

    Article  MATH  Google Scholar 

  26. Svaba, P., van Trung, T., Wolf, P.: Logarithmic signatures for abelian groups and their factorization. Tatra Mt. Math. Publ. 57, 21–33 (2013)

    MathSciNet  MATH  Google Scholar 

  27. The GAP Team: GAP – Groups, Algorithms, and Programming, Version 4.5.5, 2012, (http://www.gap-system.org)

Download references

Acknowledgments

The authors are indebted to the referees for their suggestions and helpful remarks leaded us to rearrange the paper. The research of the first and second authors are partially supported by INSF under grant number 93010006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Ashrafi.

Additional information

A. R. Ashrafi holds a PhD degree at University of Kashan.

A. R. Rahimipour holds a PhD degree at University of Qom.

A. Gholami holds a PhD degree at University of Qom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimipour, A.R., Ashrafi, A.R. & Gholami, A. The existence of minimal logarithmic signatures for the sporadic Suzuki and simple Suzuki groups. Cryptogr. Commun. 7, 535–542 (2015). https://doi.org/10.1007/s12095-015-0129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-015-0129-6

Keywords

Mathematics Subject Classification