Skip to main content
Log in

Quasi-perfect linear codes from planar and APN functions

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Let p be a prime and m be a positive integer with m ≥ 3. Let f be a mapping from \(\mathbb {F}_{p^{m}}\) to itself and \(\mathcal {C}_{f}\) be the linear code of length p m − 1, whose parity-check matrix has its j-th column \({\left [\begin {array}{c} \pi ^{j}\\ f(\pi ^{j}) \end {array} \right ]}\), where π is a primitive element in \(\mathbb {F}_{p^{m}}\) and j = 0, 1, ⋯ , p m − 2. In the case of p = 2, it is proved that \(\mathcal {C}_{f}\) has covering radius 3 when f(x) is a quadratic APN function. This gives a number of binary quasi-perfect codes with minimum distance 5. In the case that p is an odd prime, we show that for all known planar functions f(x), the covering radius of \(\mathcal {C}_{f}\) is equal to 2 if m is odd and 3 if m is even. Consequently, several classes of p-ary quasi-perfect codes are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bierbrauer, J.: New semifields, PN and APN functions. Des. Codes Crypt. 54 (3), 189–200 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bierbrauer, J.: Commutative semifields from projection mappings. Des. Codes Crypt. 61(2), 187–196 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bracken, C., Byrne, E., Markin, N., McGuire, G.: An infinite family of quadratic quadrinomial APN functions. arXiv:0707.1223 (2007)

  4. Bracken, C., Byrne, E., Markin, N., McGuire, G.: New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields and Their Applications 14(3), 703–714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Budaghyan, L., Carlet, C.: Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Trans. Inf. Theory 54(5), 2354–2357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inf. Theory 54(9), 4218–4229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Budaghyan, L., Carlet, C., Leander, G.: Constructing new APN functions from known ones. Finite Fields and Their Applications 15(2), 150–159 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Canteaut, A., Charpin, P., Dobbertin, H.: Binary m-sequences with three-valued crosscorrelation: a proof of Welch’s conjecture. IEEE Trans. Inf. Theory 46(1), 4–8 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlet, C.: Vectorial Boolean Functions for Cryptography. In: Crama, Y., Hammer, P.L (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge University Press (2010)

  10. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Crypt. 15(2), 125–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carlet, C., Ding, C.: Highly nonlinear mappings. J. Complex. 20, 205–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chabaud, F., Vaudenay, S. Links between differential and linear cryptanalysis. In: Santis, A. (ed.) : Advances in Cryptology - EUROCRYPT’94, volume 950 of Lecture Notes in Computer Science pp. 356–365. Springer, Berlin Heidelberg (1995)

    Google Scholar 

  14. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. North-Holland Mathematical Library. Elsevier Science (1997)

  15. Coulter, R., Matthews, R.: Planar functions and planes of Lenz-Barlotti class II. Des. Codes Crypt. 10(2), 167–184 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Danev, D., Dodunekov, S.: A family of ternary quasi-perfect BCH codes. Des. Codes Crypt. 49(1-3), 265–271 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Danev, D., Dodunekov, S., Radkova, D.: A family of constacyclic ternary quasi-perfect codes with covering radius 3. Des. Codes Crypt. 59(1-3), 111–118 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dobbertin, H.: Almost perfect nonlinear power functions on G F(2n): the Niho case. Inf. Comput. 151(1), 57–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dobbertin, H.: Almost perfect nonlinear power functions on G F(2n): the Welch case. IEEE Trans. Inf. Theory 45(4), 1271–1275 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dobbertin, H. Almost perfect nonlinear power functions on G F(2n): a new case for n divisible by 5. In: Jungnickel, D., Niederreiter, H. (eds.) : Finite Fields and Applications, pp 113–121. Springer, Berlin Heidelberg (2001)

    Chapter  Google Scholar 

  21. Dodunekov, S.: The optimal double-error correcting codes of Zetterberg and Dumer-Zinovev are quasiperfect. C. R. Acad. Bulg. Sci. 38(9), 1121–1123 (1985)

    MathSciNet  MATH  Google Scholar 

  22. Dodunekov, S.: Some quasi-perfect double error correcting codes. Probl. Control Inform. Theory 15(5), 367–375 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Dumer, I., Zinoviev, V.: Some new maximal codes over G F(4). Probl. Peredachi Inf. 14(3), 24–34 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Edel, Y., Kyureghyan, G., Pott, A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inf. Theory 52(2), 744–747 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Edel, Y., Pott, A.: A new almost perfect nonlinear function which is not quadratic. Advances in Mathematics of Communications 3(1), 59–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Etzion, T., Mounits, B.: Quasi-perfect codes with small distance. IEEE Trans. Inf. Theory 51(11), 3938–3946 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Feng, K., Luo, J.: Value distributions of exponential sums from perfect nonlinear functions and their applications. IEEE Trans. Inf. Theory 53(9), 3035–3041 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gallager, R.G.: Information Theory and Reliable Communication (1968)

  29. Gashkov, I., Sidel’nikov, V.: Linear ternary quasiperfect codes that correct double errors. Probl. Peredachi Inf. 22(4), 43–48 (1986)

    MathSciNet  MATH  Google Scholar 

  30. Gevorkijan, D.N., Avetisjan, A.M., Tigranjan, G.A.: On the construction of codes correcting two errors in Hammings metrix over Galois field. Vichislitel’naja Tehnika 3, 19–21 (1975)

    Google Scholar 

  31. Gold, R.: Maximal recursive sequences with three-valued recursive cross-correlation functions. IEEE Trans. Inf. Theory 14(1), 154–156 (1968)

    Article  MATH  Google Scholar 

  32. Goppa, V.D.: A new class of linear error-correcting codes. Probl. Peredach. Inform. 6(3), 24–30 (1970)

    MathSciNet  MATH  Google Scholar 

  33. Hollmann, H., Xiang, Q.: A proof of the Welch and Niho conjectures on cross-correlations of binary m-sequences. Finite Fields and Their Applications 7(2), 253–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kasami, T.: The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes. Inf. Control. 18(4), 369–394 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  35. Leducq, E.: Functions which are PN on infinitely many extensions of \(\mathbb {F}_{p},\,p\) odd. Des. Codes Crypt. 75(2), 281–299 (2015)

  36. Moreno, O., Castro, F.: Divisibility properties for covering radius of certain cyclic codes. IEEE Trans. Inf. Theory 49(12), 3299–3303 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nyberg, K. Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) : Advances in Cryptology - EUROCRYPT’93, volume 765 of Lecture Notes in Computer Science, pp 55–64. Springer, Berlin Heidelberg (1994)

    Google Scholar 

  38. Tietäväinen, A.: On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24(1), 88–96 (1973)

    Article  MathSciNet  Google Scholar 

  39. Weng, G., Zeng, X.: Further results on planar DO functions and commutative semifields. Des. Codes Crypt. 63(3), 413–423 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yuan, J., Carlet, C., Ding, C.: The weight distribution of a class of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 52(2), 712–717 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zieve, M.: Planar functions and perfect nonlinear monomials over finit fields. Des. Codes Crypt. 75(1), 71–80 (2015)

  42. Zinoviev, V., Leontiev, V.: The nonexistence of perfect codes over Galois fields. Probl. Control Inform. Theory 2(2) (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlei Li.

Additional information

Part of the results in this paper have been presented at the 7th International Workshop on Optimal Codes and Related Topics, OCRT 2013.

Compliance with ethical standards

Compliance with ethical standards

Funding

This study was funded by the Norwegian Research Council.

Conflict of interests

The work of both authors is supported by the Norwegian Research Council and the authors declare that they have no conflict of interest.

1.1 Research involving human participants and/or animals and informed consent

This is not applicable for the research in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Helleseth, T. Quasi-perfect linear codes from planar and APN functions. Cryptogr. Commun. 8, 215–227 (2016). https://doi.org/10.1007/s12095-015-0132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-015-0132-y

Keywords

Mathematics Subject Classification (2010)

Navigation