Skip to main content

Advertisement

Log in

Some new classes of 2-fold optimal or perfect splitting authentication codes

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Optimal restricted strong partially balanced t-design can be used to construct splitting authentication codes which achieve combinatorial lower bounds or information-theoretic lower bounds. In this paper, we investigate the existence of optimal restricted strong partially balanced 2-designs ORSPBD (v, k×c,1), and show that there exists an ORSPBD (v,2×c,1) for any positive integer vv 0 (mod 2c 2) and \(v_{0}\in \{1\leq x\leq 2c^{2}:\ \gcd (x,c)=1\ \text {or} \ \gcd (x,c)=c \} \setminus \) \(\{c^{2}+1\leq x\leq (c+1)^{2} :\gcd (x,c)=1\ \text {and}\ \gcd (x,2)=2\}\). Furthermore, we determine the existence of an ORSPBD (v,k×c,1) for any integer vk c with (k,c)=(2,4), (2,5), (3,2) or for any even integer vk c with (k,c)=(4,2). As their applications, we obtain six new infinite classes of 2-fold optimal or perfect c-splitting authentication codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blundo, C., De Santis, A., Kurosawa, K., Ogata, W.: On a fallacious bound for authentication codes. J. Cryptol 12, 155–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Browwer, A.E., Schrijver, A., Hanani, H.: Group divisible designs with block size 4. Discrete Math. 20, 1–10 (1977)

    Article  MathSciNet  Google Scholar 

  3. Chee, Y.M., Zhang, X., Zhang, H.: Infinite families of optimal splitting authentication codes secure against spoofing attacks of higher order. Adv. Math. Commun. 5, 59–68 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colbourn, C.J., Hoffman, D.G., Rees, R.: A new class of group divisible designs with block size three. J. Combin. Theory Ser A 59, 73–89 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colbourn, C.J., Fu, H., Ge, G., Ling, A.C.H., Lu, H.: Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 7. SIAM. J. Discrete Math. 23, 109–122 (2008)

    Article  MATH  Google Scholar 

  6. De Soete, M.: New bounds and constructions for authentication/secrecy codes with splitting. J. Cryptol 3, 173–186 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, B.: Splitting balanced incomplete block designs with block size 3×2. J. Combin. Designs 12, 404–420 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, B.: Splitting balanced incomplete block designs. Australas. J. Combin 31, 287–298 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Ge, G., Miao, Y., Wang, L.: Combinatorial constructions for optimal splitting authentication codes. SIAM. J. Discrete Math 18, 663–678 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ge, G., Ling, A.C.H.: Group divisible designs with block size four and group type g u m 1 for small g. Discrete Math 285, 97–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gronau, H.-D.O.F., Mullin, R.C., Pietsch, C.: The closure of all subsets of {3,4,…,10} which include 3. Ars Combin 41, 129–161 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Hanani, H.: Balanced incomplete block designs and related designs. Discrete Math 11, 255–369 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huber, M.: Combinatorial bounds and characterizations of splitting authentication codes. Cryptogr. Commun 2, 173–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang, M., Du, B.: A new class of splitting 3-designs. Des. Codes Cryptogr 60, 283–290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang, M., Du, B.: A new class of 3-fold perfect splitting authentication codes. Des. Codes Cryptogr 62, 109–119 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liang, M., Du, B.: Existence of optimal restricted strong partially balanced designs. Utilitas Math 89, 15–31 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Liang, M., Jiang, S., Du, B.: A new class of 2-fold perfect 4-splitting authentication codes. Ars Combin. appear

  18. Ogata, W., Kurosawa, K., Stinson, D.R., Saido, H.: New combinatorial designs and their applications to authentication codes and secret sharing schemes. Discrete Math 279, 383–405 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pei, D.: Information-theoretic bounds for authentication codes and block designs. J. Cryptol 8, 177–188 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pei, D., Li, Y., Wang, Y., Safavi-Naini, R.: Characterization of optimal authentication codes with arbitration. In: Pieprzyk. J., Safavi-Naini, R., Seberry, J. (eds.) Information Security and Privacy. Lecture Notes in Computer Science, vol. 1587, pp 303–313. Springer, Berlin (1999)

  21. Rosenbaum, U.: A lower bound on authentication after having abserved a sequence of messages. J. Cryptol 6, 135–156 (1993)

    Article  MATH  Google Scholar 

  22. Sgarro, A.: Information-theoretic bounds for authentication frauds. J. Comput. Security 2, 53–63 (1994)

    MATH  Google Scholar 

  23. Simmons, G.J.: Message authentication with arbitration of transmitter/receiver disputes. In: Chaum, D., Price, W.L (eds.) Advances in Cryptology-EUROCRYP’87. Lecture Notes in Computer Science, vol. 304, pp 151–165. Springer, Berlin (1988)

  24. Simmons, G.J.: A Cartesian product construction for unconditionally secure authentication codes thai permit arbitration. J. Cryptol 2, 77–104 (1990)

    Article  MATH  Google Scholar 

  25. Smeets, B.: Bound on the probability of deception in multiple authentication. IEEE Trans. Inf. Theory 40, 1586–1591 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, J.: A new class of optimal 3-splitting authentication codes. Des. Codes Cryptogr 38, 373–381 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, J., Su, R.: Further results on the existence of splitting BIBDs and application to authentication codes. Acta Appl. Math 109, 791–803 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their heartfelt gratitude to Professor B. Du for his many constructive discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Liang.

Additional information

Miao Liang is supported by NSFC Grants 11301370, 11571251 and sponsored by Qing Lan Project. Lijun Ji is supported by NSFC Grants 11222113, 11431003 and a project funded by the priority academic grogram development of JiangSu higher education institutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Ji, L. & Zhang, J. Some new classes of 2-fold optimal or perfect splitting authentication codes. Cryptogr. Commun. 9, 407–430 (2017). https://doi.org/10.1007/s12095-015-0179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-015-0179-9

Keywords

Mathematics Subject Classification (2010)