Abstract
Linear Feedback Shift Registers (LFSRs) and Feedback with Carry Shift Registers (FCSRs) are two pseudo-random generators which are widely used in many cryptographic applications. The Ring representation of them has been proposed using a matrix approach. In this paper, we show how to construct Ring LFSRs and Ring FCSRs with low diffusion delay (close to the expected value \(\sqrt {n}\)) when considering other hardware cryptographic criteria.

Similar content being viewed by others
References
Arnault, F., Berger, T.P.: F-FCSR: design of a new class of stream ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE. Lecture Notes in Computer Science, vol. 3557, pp. 83–97. Springer, New York (2005)
Arnault, F., Berger, T.P., Benjamin, P.: A Matrix Approach for FCSR Automata. Cryptogr. Commun. 3(2), 109–139 (2010)
Arnault, F., Berger, T.P., Lauradoux, C.: Update on F-FCSR Stream Cipher. ECRYPT-Network of Excellence in Cryptology (Call for stream Cipher Primitives-Phase 2 2006) (2006). [http://www.ecrypt.eu.org/stream/]
Arnault, F., Berger, T.P., Lauradoux, C., Minier, M., Pousse, B.: A new approach for FCSRs. In: M.J.J. Jr., Rijmen, V., Safavi-Naini, R. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer Science, vol. 5867, pp 433–448. Springer, New York (2009)
Arnault, F., Berger, T.P., Minier, M., Pousse, B.: Revisiting LFSRs for cryptographic applications. IEEE Trans. Inf. Theory 57(12), 8095–8113 (2011)
Berger, T.P., Minier, M., Pousse, B.: Software oriented stream ciphers based upon FCSRs in diversified mode. In: Roy, B.K., Sendrier, N. (eds.) INDOCRYPT. Lecture Notes in Computer Science, vol. 5922, pp 119–135. Springer, New York (2009)
Flajolet, P., Odlyzko, A.M.: Random mapping statistics. Advances in cryptologyEUROCRYPT’89, pp 329–354. Springer, Berlin (1990)
Goresky, M., Klapper, A.: Arithmetic crosscorrelations of feedback with carry shift register sequences. IEEE Trans. Inf. Theory 43(4), 1342–1345 (1997)
Goresky, M., Klapper, A.: Fibonacci and Galois representations of feedback-with-carry shift registers. IEEE Trans. Inf. Theory 48(11), 2826–2836 (2002)
Hell, M., Johansson, T.: Breaking the F-FCSR-H Stream Cipher in Real Time. In: Pieprzyk, J. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 5350, pp 557–569. Springer, New York (2008)
Imase, M., Itoh, M.: Design to minimize diameter on building-block network. IEEE Trans. Comput. 100(6), 439–442 (1981)
Imase, M., Itoh, M.: A design for directed graphs with minimum diameter. IEEE Trans. Comput. 32(8), 782–784 (1983)
Klapper, A., Goresky, M.: 2-adic shift registers. In: Anderson, R.J. (ed.) FSE. Lecture Notes in Computer Science, vol. 809, pp 174–178. Springer, New York (1993)
Klapper, A., Goresky, M.: Large Period Nearly deBruijn FCSR Sequences. Advances in Cryptology-EUROCRYPT’95, pp 263–273. Springer, Berlin (1995)
Lin, Z., Ke, L., Lin, D., Gao, J.: On the LFSRization of a Class of FCSR Automata. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98(1), 434–440 (2015)
Lin, Z., Pei, D., Lin, D.: Construction of Transition Matrices for Binary FCSRs. Tech. Rep. 2015/1181. Available: http://eprint.iacr.org/
Mruglaski, G., Rajski, J., Tyszer, J.: Ring generators-new devices for embedded test applications. Computer-Aided Design of Integrated Circuits and Systems. IEEE Trans. Comput.-Aided Design 23(9), 1306–1320 (2004)
Tian, T., Qi, W.F.: Linearity properties of binary FCSR sequences. Des. Codes Cryptography 52, 249–262 (2009)
Wang, H., Stankovski, P., Johansson, T.: A generalized birthday approach for efficiently finding linear relations in l-sequences. Des. Codes Cryptography 74(1), 41–57 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by a National Key Basic Research Project of China (2011CB302400), National Natural Science Foundations of China (11371106), National Science Foundation of China (61379139) and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA06010701).
Rights and permissions
About this article
Cite this article
Lin, Z., Lin, D. & Pei, D. Practical construction of ring LFSRs and ring FCSRs with low diffusion delay for hardware cryptographic applications. Cryptogr. Commun. 9, 431–443 (2017). https://doi.org/10.1007/s12095-016-0183-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-016-0183-8