Skip to main content
Log in

Cyclic codes of odd length over ℤ4 [u] / 〈u k

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Let \(R=\mathbb{Z}_{4}[u]/ \langle u^k \rangle=\mathbb{Z}_{4}+u \mathbb{Z}_{4}+\ldots+u^{k-1}\mathbb{Z}_{4}\) (\(u^{k}=0\)), where k ≥ 2 is an positive integer. For any odd positive integer n, it is known that cyclic codes of length n over R are identified with ideals of the ring \(R[x]/\langle x^{n}-1\rangle\). In this paper, an explicit representation for each cyclic code over R of length n is provided and a formula to count the number of codewords in each code is given. Then a formula to calculate the number of cyclic codes of length n over R is obtained. Precisely, the dual code of each cyclic code and self-dual cyclic codes of length n over R are investigated. As an application, some good quasi-cyclic codes of length 7k and index k over ℤ4 are obtained from cyclic codes over R = ℤ4 [u] / 〈u k〉 when k = 2, 3, 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abualrub, T., Siap, I.: Cyclic codes over the ring \(\mathbb {Z}_{2}+u\mathbb {Z}_{2}\) and \(\mathbb {Z}_{2}+u\mathbb {Z}_{2}+u^2\mathbb {Z}_{2}\). Des. Codes Cryptogr. 42, 273–287 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aydin, N., Asamov, T.: The \(\mathbb {Z}_{4}\) database, Online available at: http://www.asamov.com/Z4Codes.Accessedon2016-04-18

  3. Al-Ashker, M., Hamoudeh, M.: Cyclic codes over \(Z_{2}+uZ_{2}+u^{2}Z_{2}+\ldots +u^{k}-1Z_{2}\). Turk. J. Math. 35(4), 737–749 (2011)

    MATH  Google Scholar 

  4. Bonnecaze, A., Udaya, P.: Cyclic codes and self-dual codes over \(\mathbb {F}_{2}+u\mathbb {F}_{2}\). IEEE Trans. Inform. Theory 45, 1250–1255 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, Y.: Generalized quasi-cyclic codes over Galois rings: structural properties and enumeration. Appl. Algebra Engrg. Comm. Comput. 22, 219–233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cui, J., Junying, P.: Quaternary 1-generator quasi-cyclic codes. Des. Codes Cryptogr. 58, 23–33 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dougherty, S.T., Kim, J.-L., Kulosman, H., Liu, H.: Self-dual codes over commutative Frobenius rings. Finite Fields Appl. 16, 14–26 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, J., Fu, F.W., Xiao, L., Bandi, R.K.: On cyclic codes and quasi-cyclic codes over \(\mathbb {Z}_{q} + u\mathbb {Z}_{q}\). Discret. Math. Algorithm Appl. 7(9 pages), 1550058 (2015)

    Article  Google Scholar 

  9. Norton, G., Sălăgean-Mandache, A.: On the structure of linear and cyclic codes over finite chain rings. Appl. Algebra Engrg. Comm. Comput. 10, 489–506 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Singh, A.K., Kewat, P.K.: On cyclic codes over the ring \(\mathbb {Z}_{p}[u]/u^{k}\rangle \). Des. Codes Cryptogr. 72, 1–13 (2015)

    Article  MATH  Google Scholar 

  11. Wan, Z.-X.: Quaternary codes. World Scientific Publishing Co. Inc (1997)

  12. Wan, Z.-X.: Lectures on finite fields and Galois rings. World Scientific Publishing Co. Inc (2003)

  13. Yildiz, B., Karadeniz, S.: Linear codes over \(\mathbb {Z}_{4}+u\mathbb {Z}_{4}\): MacWilliams identities, projections, and formally self-dual codes. Finite Fields Appl. 27, 24–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yildiz, B., Aydin, N.: On cyclic codes over \(\mathbb {Z}_{4}+ u\mathbb {Z}_{4}\) and \(\mathbb {Z}_{4}\) images. Int. J. Inf. 2, 226–237 (2014)

    Google Scholar 

Download references

Acknowledgments

This research is supported in part by the Research Fund for the Doctoral Program of Higher Education of China (No. 20120161110017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Cao.

Appendices

Appendix A: Proof of Theorem 3.7

In order to simplify the notations, we denote \(\mathcal {Q}_{j}={\mathcal {K}}_{j}[u]/\langle u^{k}\rangle \) and \({\mathcal {R}}_{j}={\mathcal {F}}_{j}[u]/\langle u^{k}\rangle \). By Lemma 3.5(i), \({\mathcal {R}}_{j}\) is a finite chain ring with maximal ideal \(u{\mathcal {R}}_{j}\), the nilpotency index of u is equal to k and the residue field of \({\mathcal {R}}_{j}\) is \({\mathcal {R}}_{j}/(u{\mathcal {R}}_{j})\cong {\mathcal {F}}_{j}\). Then by finite chain ring theory (cf. [9]) and \(|{\mathcal {F}}_{j}|=2^{d_{j}}\), we deduce that all ideals of \({\mathcal {R}}_{j}\) are given by \(\{0\}=u^{k}{\mathcal {R}}_{j}\subset u^{k-1}{\mathcal {R}}_{j}\subset \ldots \subset u{\mathcal {R}}_{j}\subset u^{0}{\mathcal {R}}_{j}={\mathcal {R}}_{j}\) and \(|u^{l}{\mathcal {R}}_{j}|=|{\mathcal {F}}_{j}|^{k-l}=2^{d_{j}(k-l)}\). Moreover, we have \(2\mathcal {Q}_{j}=2{\mathcal {R}}_{j}\) by Lemma 3.6 where we regard \({\mathcal {R}}_{j}\) as a subset of \(\mathcal {Q}_{j}\).

Let C be any ideal of \(\mathcal {Q}_{j}\). We define \(\text {Tor}_{0}(C)=\tau (C)\) snd \(\text {Tor}_{1}(C)=\tau (\{\alpha \in \mathcal {Q}_{j}\mid 2\alpha \in C\})\). Since \(\tau \) is a surjective ring homomorphism from \(\mathcal {Q}_{j}\) onto \({\mathcal {R}}_{j}\), both \(\text {Tor}_{0}(C)\) and \(\text {Tor}_{1}(C)\) are ideals of \({\mathcal {R}}_{j}\) satisfying \(\text {Tor}_{0}(C)\subseteq \text {Tor}_{1}(C)\). Hence there is a unique pair \((i,s)\) of integers, \(0\leq s\leq i\leq k\), such that

$$\text{Tor}_{0}(C)=u^{i}{\mathcal{R}}_{j} \ \text{and} \ \text{Tor}_{1}(C)=u^{s}{\mathcal{R}}_{j}.$$

Let \(\tau |_{C}\) be the restriction of \(\tau \) to C. Then \(\tau |_{C}\) is a surjective ring homomorphism from C onto \(\text {Tor}_{0}(C)\) with kernel Ker(τ| C )=2Tor1(C) , which implies |Ker(τ| C )|=|Tor1(C)|. Hence we deduce that

$$ |C|=|\text{Tor}_{0}(C)||\text{Tor}_{1}(C)|=|u^{i}{\mathcal{R}}_{j}||u^{s}{\mathcal{R}}_{j}|=2^{d_{j}(2k-(i+s))} $$
(10)

by the ring isomorphism theorems and Lemma 3.5(iii). Then we have the following cases.

  1. Case (i)

    \(s=i\). In this case, we have \(|C|=2^{2d_{j}(k-i)}\) by (10).

  1. (i-1)

    When \(s=k\), then \(i=k\) and \(C=\{0\}=u^{k}\mathcal {Q}_{j}=\langle u^{k}\rangle \).

  2. (i-2)

    Let \(0\leq i\leq k-1\). By \(u^{i}\in u^{i}{\mathcal {R}}_{j}=\text {Tor}_{0}(C)\), there exists \(\alpha \in \mathcal {Q}_{j}\) such that \(u^{i}+2\alpha \in C\). Then by Lemma 3.6 we can assume that \(\alpha \in {\mathcal {R}}_{j}\).

    It is obvious that \(\langle u^{i}+2\alpha \rangle =\mathcal {Q}_{j}(u^{i}+2\alpha )\subseteq C\). Conversely, let \(\xi \in C\). Since \(\text {Tor}_{0}(C)=u^{i}{\mathcal {R}}_{j}\), by (6) and Lemma 3.6 there exist \(\beta ,\gamma \in {\mathcal {R}}_{j}\) such that \(\xi =u^{i}\beta +2\gamma \), which implies \(2(\gamma -\alpha \beta )=\xi -(u^{i}+2\alpha )\beta \in C\) and so \(\tau (\gamma -\alpha \beta )\in \text {Tor}_{1}(C)=u^{i}{\mathcal {R}}_{j}\). Hence \(\tau (\gamma -\alpha \beta )=u^{i}\delta \) for some \(\delta \in {\mathcal {R}}_{j}\). From this and by \(\text {Ker}(\tau )=2{\mathcal {Q}}_{j}\), we deduce that \(\gamma -\alpha \beta =u^{i}\delta +2w\) for some \(w\in {\mathcal {Q}}_{j}\), which implies \(2\gamma =2(\alpha \beta +u^{i}\delta +2w)=2\alpha \beta +2u^{i}\delta \). Therefore, ξ=(u i+2α)β+(u i+2α)⋅2δ=(u i+2α)(β+2δ)∈〈u i+2α〉. Hence \(C=\langle u^{i}+2\alpha \rangle \).

  3. (i-2-1)

    When \(i=0\), \(1+2\alpha \in C\). By \((1+2\alpha )(1+2\alpha )=1\) in \(\mathcal {Q}_{j}\), we see that \(1+2\alpha \) is an invertible element of \(\mathcal {Q}_{j}\), which implies \(C=\mathcal {Q}_{j}=\langle u^{0}\rangle \).

  4. (i-2-2)

    Let \(1\leq i\leq k-1\).

Since \(\text {Tor}_{1}(C)=u^{i}{\mathcal {R}}_{j}\), we have \(2u^{i}=2(u^{i}+2\alpha )\in C\). As \(\alpha \in {\mathcal {R}}_{j}\), by Lemma 3.5(v) we can write \(\alpha \) as \(\alpha =u^{i}\beta \) or \(\alpha =u^{t}h+u^{i}\beta \) for some \(\beta \in {\mathcal {R}}_{j}\), \(0\leq t\leq i-1\) and \(h\in {\mathcal {R}}_{j}^{\times }\).

  1. When \(\alpha =u^{i}\beta \), we have \(u^{i}=u^{i}+2\alpha -(2u^{i})\beta \in C\), and so \(C=\langle u^{i}\rangle \).

  2. Let \(\alpha =u^{t}h+u^{i}\beta \). Then \(u^{i}+2u^{t}h=u^{i}+2\alpha -(2u^{i})\beta \in C, \)and hence \(C=\langle u^{i}+2u^{t}h\rangle \). In this case, by \(u^{k}=0\) we have \(2u^{k-i+t}= u^{k-i}h^{-1}(u^{i}+2u^{t}h)\in C\) where \(h^{-1}\) is the inverse of h in \({\mathcal {R}}_{j}\). Therefore, \(u^{k-i+t}\in \text {Tor}_{1}(C)=u^{i}{\mathcal {R}}_{j}\), which implies \(k-i+t\geq i\), and hence \(t\geq 2i-k\).

Now, let \(h_{1},h_{2}\in {\mathcal {R}}_{j}^{\times }\) and \(0\leq t_{1},t_{2}\leq k-1\) satisfying \(C=\langle u^{i}+2u^{t_{1}}h_{1}\rangle =\langle u^{i}+2u^{t_{2}}h_{2}\rangle \). Then \(2(u^{t_{1}}h_{1}-u^{t_{2}}h_{2})=(u^{i}+2u^{t_{1}}h_{1})-(u^{i}+2u^{t_{2}}h_{2})\in C\), which implies \(u^{t_{1}}h_{1}-u^{t_{2}}h_{2}\in \text {Tor}_{1}(C)=u^{i}{\mathcal {R}}_{j}\). From this we deduce that \(t_{1}=t_{2}=t\) and \(u^{t}(h_{1}-h_{2})\in u^{i}{\mathcal {R}}_{j}\). Then by finite chain ring theory (cf. [9]) and \(u^{t}(h_{1}-h_{2})\in u^{i}{\mathcal {R}}_{j}\), it follows that \(h_{1}\equiv h_{2}\) (mod \(u^{i-t}\)), i.e., \(h_{1}=h_{2}\) as elements of \(({\mathcal {R}}_{j}/(u^{i-t}{\mathcal {R}}_{j})^{\times }\). Finally, by \({\mathcal {R}}_{j}={\mathcal {F}}_{j}[u]/\langle u^{k}\rangle \) we have \(({\mathcal {R}}_{j}/(u^{i-t}{\mathcal {R}}_{j})^{\times }={\mathcal {F}}_{j}[u]/\langle u^{i-t}\rangle \) up to a natural ring isomorphism.

As stated above, we conclude that all distinct ideals C of \(\mathcal {Q}_{j}\) satisfying \(\text {Tor}_{0}(C)=\text {Tor}_{1}(C)=u^{i}{\mathcal {R}}_{j}\) are given by (I) and (III) in the table.

  1. Case (ii)

    \(i=k\) and \(0\leq s\leq k-1\).

In this case, we have \(\text {Tor}_{0}(C)=\{0\}\) and \(|C|=2^{d_{j}(2k-(k+s))}=2^{d_{j}(k-s)}\) by (10). As \(\text {Tor}_{1}(C)=u^{s} {\mathcal {R}}_{j}\), one can easily verify that all distinct ideals of \(\mathcal {Q}_{j}\) in this case are given by: (II) \(C=\langle 2u^{s}\rangle \) where \(0\leq s\leq k-1\).

  1. Case (iii)

    \(s=0\) and \(1\leq i\leq k-1\).

    In this case, we have \(|C|=2^{d_{j}(2k-i)}\) by (10). Moreover, by \(1\in \text {Tor}_{1}(C)=u^{0} {\mathcal {R}}_{j}\) we conclude that \(2=2u^{0}\in C\). Then by \(\text {Tor}_{0}(C)=u^{i} {\mathcal {R}}_{j}\) it follows that \(C=\langle u^{i},2\rangle \) immediately.

  2. Case (iv)

    \(1\leq s<i\leq k-1\). In this case, \(|C|=2^{d_{j}(2k-(i+s))}\) by (10).

    By \(\text {Tor}_{0}(C)=u^{i} {\mathcal {R}}_{j}\) and \(\text {Tor}_{1}(C)=u^{s} {\mathcal {R}}_{j}\) we have \(2u^{s}\in C\) and there exists \(\alpha \in {\mathcal {R}}_{j}\) such that \(u^{i}+2\alpha \in C\), which implies \(\langle u^{i}+2\alpha , 2u^{s}\rangle \subseteq C\). Conversely, let \(\xi \in C\). By \(\text {Tor}_{0}(C)=u^{i} {\mathcal {R}}_{j}\) there exist \(\beta ,\gamma \in {\mathcal {R}}_{j}\) such that \(\xi =u^{i}\beta +2\gamma \). Then from \(2(\gamma -\alpha \beta )=\xi -(u^{i}+2\alpha )\beta \in C\), we deduce \(\tau (\gamma -\alpha \beta )\in \text {Tor}_{1}(C)=u^{s} {\mathcal {R}}_{j}\), which implies \(\gamma -\alpha \beta =u^{s} \delta +2w\) for some \(\delta ,w\in {\mathcal {R}}_{j}\). By \(2\gamma =2\alpha \beta +2u^{s} \delta \), it follows that \(\xi =(u^{i}+2\alpha )\beta +(2u^{s})\delta \in \langle u^{i}+2\alpha , 2u^{s}\rangle \). Hence \(C=\langle u^{i}+2\alpha , 2u^{s}\rangle \).

Furthermore, by \(2u^{s}\in C\) and an argument similar to the proof of Case (i) we can assume that \(\alpha =0\) or \(\alpha =u^{t}h\), where \(h\in {\mathcal {R}}_{j}^{\times }\) and \(0\leq t\leq s-1\).

  1. (iv-1)

    When \(\alpha =0\), \(C=\langle u^{i}, 2u^{s}\rangle \) which is given by (V) in the table.

  2. (iv-2)

    Let \(C=\langle u^{i}+2u^{t}h, 2u^{s}\rangle \) where \(h\in {\mathcal {R}}_{j}^{\times }\) and \(0\leq t\leq s-1\).

Assume \(C=\langle u^{i}+2u^{t_{1}}h_{1}, 2u^{s}\rangle =\langle u^{i}+2u^{t_{2}}h_{2}, 2u^{s}\rangle \) where \(0\leq t_{1},t_{2}\leq s-1\) and \(h_{1},h_{2}\in {\mathcal {R}}^{\times }\). Then \(2(u^{t_{1}}h_{1}-u^{t_{2}}h_{2})=(u^{i}+2u^{t_{1}}h_{1})-(u^{i}+2u^{t_{2}}h_{2})\in C\), which implies \(u^{t_{1}}h_{1}-u^{t_{2}}h_{2}\in \text {Tor}_{1}(C)=u^{s} {\mathcal {R}}_{j}\). From this and by an argument similar to the proof of Case (i), we deduce that \(t_{1}=t_{2}=t\) and \(h_{1}\equiv h_{2}\) (mod \(u^{s-t} {\mathcal {R}}_{j}\)). By the latter condition, we have \(h=h_{1}=h_{2}\in ({\mathcal {R}}_{j}/(u^{s-t}{\mathcal {R}}_{j}))^{\times }\). From this and by \({\mathcal {R}}_{j}/(u^{s-t}{\mathcal {R}}_{j})={\mathcal {F}}_{j}[u]/\langle u^{s-t}\rangle \), we deduce that all distinct ideals of \(\mathcal {Q}_{j}\) in this case are given by: \(C=\langle u^{i}+2u^{t}h, 2u^{s}\rangle \) where \(h\in ({\mathcal {F}}_{j}[u]/\langle u^{s-t}\rangle )^{\times }\).

As \(2u^{k-i+t}=u^{k-i}h^{-1}(u^{i}+2u^{t}h)\in C\), we have \(u^{k-i+t}\in \text {Tor}_{1}(C)=u^{s} {\mathcal {R}}_{j}\), which implies \(k-i+t\geq s\). So we have one of the following two cases:

  1. (♢-1)

    \(k-i+t=s\), i.e., \(s-t=k-i\).

    In this case, by \(2u^{s}=u^{k-i}h^{-1}(u^{i}+2u^{t}h)\) we have \(C=\langle u^{i}+2u^{t}h\rangle \) and \(2i>i+s=k+t\), i.e., \(t<2i-k\).

    Furthermore, we have \(h\in ({\mathcal {F}}_{j}[u]/\langle u^{k-i}\rangle )^{\times }\) and \(|C|=2^{d_{j}(2k-(i+s))} =2^{d_{j}(2k-(k+t))}=2^{d_{j}(k-t)}\). Hence C is given by (IV) in the table.

  2. (♢-2)

    \(k-i+t>s\), i.e., \(i+s\leq k+t-1\). In this case, C is given by (VI) in the table.

    As stated above, we conclude that all distinct ideals and the number of elements in each ideal of \(\mathcal {Q}_{j}\) are given by (I)–(VI) of the table.

It is obvious that the number of ideals in (I), (II) and (V) is equal to \(k+1\), k and \(\frac {1}{2}k(k-1)\) respectively. Then we count the number of ideals in (III), (IV) and (V) respectively. In order to simplify the notation, we denote \(q=2^{d_{j}}\) in the following.

First, we count the number of ideals in (III). Let \(0\leq t<i\leq k-1\) and \(t\geq 2i-k\). By Lemma 3.5(iv), it follows that \(|(\mathcal {F}_{j}[u]/\langle u^{i-t}\rangle )^{\times }|=(2^{d_{j}}-1)(2^{d_{j}})^{(i-t)-1}=(q-1)q^{i-t-1}\). Then we have one of the following two cases:

  1. (♢-1)

    k is even. In this case, \(t\geq 2i-k\) if and only if i and t satisfy one of the following two conditions:

  2. (♢-1-1)

    \(i\leq \frac {k}{2}\), i.e., \(2i\leq k\), and \(0\leq t\leq i-1\). In this case, the number of ideals is equal to

    $$N_{1}=\sum\limits_{i=1}^{\frac{k}{2}}\sum\limits_{t=0}^{i-1}|(\mathcal{F}_{j}[u]/\langle u^{i-t}\rangle)^{\times}|=\sum\limits_{i=1}^{\frac{k}{2}}\sum\limits_{t=0}^{i-1}(q-1)q^{i-t-1}=\frac{q^{\frac{k}{2}+1}-1}{q-1}-(\frac{k}{2}+1).$$
  3. (♢-1-2)

    \(i\geq \frac {k}{2}+1\), i.e., \(2i> k\), and \(2i-k\leq t\leq i-1\). In this case, the number of ideals is equal to

    $$N_{2}=\sum\limits_{i=1}^{\frac{k}{2}}\sum\limits_{t=0}^{i-1}|(\mathcal{F}_{j}[u]/\langle u^{i-t}\rangle)^{\times}|=\sum\limits_{i=\frac{k}{2}+1}^{k-1}\sum\limits_{t=2i-k}^{i-1}(q-1)q^{i-t-1} =\frac{q^{\frac{k}{2}}-1}{q-1}-\frac{k}{2}.$$

    Therefore, the number of ideals in (III) is equal to \({\Omega }_{1}(q,k)=N_{1}+N_{2}=\frac {q^{\frac {k}{2}+1}+ q^{\frac {k}{2}}-2}{q-1}-(k+1)\), where k is even.

  4. (♢-2)

    k is odd. In this case, \(t\geq 2i-k\) if and only if i and t satisfy one of the following two conditions:

  5. (♢-2-1)

    \(i\leq \frac {k-1}{2}\), i.e., \(2i\leq k\), and \(0\leq t\leq i-1\). Then the number of ideals is equal to \(N_{1}={\sum }_{i=1}^{\frac {k-1}{2}}{\sum }_{t=0}^{i-1}(q-1)q^{i-t-1}=\frac {q^{\frac {k+1}{2}}-1}{q-1}-\frac {k+1}{2}\).

  6. (♢-2-2)

    \(i\geq \frac {k-1}{2}+1\), i.e., \(2i> k\), and \(2i-k\leq t\leq i-1\). Then the number of ideals is equal to \(N_{2}={\sum }_{i=\frac {k-1}{2}+1}^{k-1}{\sum }_{t=2i-k}^{i-1}(q-1)q^{i-t-1} =\frac {q^{\frac {k+1}{2}}-1}{q-1}-\frac {k+1}{2}\).

    Therefore, the number of ideals in (III) is equal to \({\Omega }_{1}(q,k)=N_{1}+N_{2}=\frac {2q^{\frac {k+1}{2}}-2}{q-1}-(k+1)\), where k is odd.

    Next we count the number of ideals in (IV). Let \(0\leq t<i\leq k-1\) and \(t<2i-k\). By Lemma 3.5(iv), it follows that \(|(\mathcal {F}_{j}[u]/\langle u^{k-i}\rangle )^{\times }|=(q-1)q^{k-i-1}\). Then we have one of the following two cases:

  7. (♢-1)

    k is even. Then \(t<2i-k\) if and only if \(2i>k\), i.e., \(i\geq \frac {k}{2}+1\), and \(0\leq t\leq 2i-k-1\). Hence the number of ideals in (IV) is equal to

    $$\begin{array}{@{}rcl@{}} {\Omega}_{2}(q,k)&=&\sum\limits_{i=\frac{k}{2}+1}^{k-1}\sum\limits_{t=0}^{2i-k-1}|(\mathcal{F}_{j}[u]/\langle u^{k-i}\rangle)^{\times}|=\sum\limits_{i=\frac{k}{2}+1}^{k-1}\sum\limits_{t=0}^{2i-k-1} (q-1)q^{k-i-1}\\ &=&(q-1)\sum\limits_{i=\frac{k}{2}+1}^{k-1}(2i-k)q^{k-i-1}. \end{array} $$
  8. (♢-2)

    k is odd. Then \(t<2i-k\) if and only if \(2i>k\), i.e., \(i\geq \frac {k+1}{2}\), and \(0\leq t\leq 2i-k-1\). Hence the number of ideals in (IV) is equal to

    $${\Omega}_{2}(q,k)=\sum\limits_{i=\frac{k+1}{2}}^{k-1}\sum\limits_{t=0}^{2i-k-1} (q-1)q^{k-i-1} =(q-1)\sum\limits_{i=\frac{k+1}{2}}^{k-1}(2i-k)q^{k-i-1}.$$

Finally, we count the number of ideals in (VI). By Lemma 3.5(iv), we have \(|(\mathcal {F}_{j}[u]/\langle u^{s-t}\rangle )^{\times }|=(q-1)q^{s-t-1}\). So the number of ideals in (VI) is equal to

$$\sum\limits_{t=0}^{k-4}\sum\limits_{t+1\leq s\leq \frac{k+t}{2}-1}\sum\limits_{s+1\leq i\leq k+t-1-s}|(\mathcal{F}_{j}[u]/\langle u^{s-t}\rangle)^{\times}| =(q-1){\Gamma}(q,k),$$

where \({\Gamma }(q,k)={\sum }_{t=0}^{k-4}{\sum }_{t+1\leq s\leq \frac {k+t}{2}-1}{\sum }_{s+1\leq i\leq k+t-1-s}q^{s-t-1}\). When \(k\geq 5\),

$$\begin{array}{@{}rcl@{}} {\Gamma}(q,k)&=&\sum\limits_{t=1}^{k-4}\sum\limits_{t+1\leq s\leq \frac{k+t}{2}-1}{\sum}_{s+1\leq i\leq k+t-1-s}q^{s-t-1} +\sum\limits_{1\leq s\leq \frac{k}{2}-1}\sum\limits_{s+1\leq i\leq k-1-s}q^{s-1}\\ &=&\sum\limits_{t^{\prime}=0}^{(k-1)-4}\sum\limits_{t^{\prime}+1\leq s^{\prime}\leq \frac{(k-1)+t^{\prime}}{2}-1}\sum\limits_{s^{\prime}+1\leq i^{\prime}\leq (k-1)+t^{\prime}-1-s^{\prime}}q^{s^{\prime}-t^{\prime}-1} \ \ \ \ \ \ \ \\ &&+\sum\limits_{s=1}^{\lfloor \frac{k}{2}\rfloor-1}(k-2s-1)q^{s-1}\\ &=&{\Gamma}(q,k-1)+\sum\limits_{s=1}^{\lfloor \frac{k}{2}\rfloor-1}(k-2s-1)q^{s-1}. \end{array} $$

If \(1\leq k\leq 3\), there is no triple \((t,s,i)\) of integers satisfying \(0\leq t<s<i\leq k-1\) and \(i+s\leq k+t-1\). In this case, the number of ideals in (VI) is equal to 0. Then we set \({\Gamma }(q,k)=0\) for \(k=1,2,3\).

If \(k=4\), there is a unique triple \((t,s,i)=(0,1,2)\) of integers satisfying \(0\leq t<s<i\leq k-1\) and \(i+s\leq k+t-1\). In this case, all distinct ideals in (VI) are given by \(\langle u^{2}+2h,2u\rangle \), where \(h\in ({\mathcal {F}}_{j}[u]/\langle u\rangle )^{\times }={\mathcal {F}}_{j}^{\times }\) and \(|{\mathcal {F}}_{j}^{\times }|=q-1\). Then we set \({\Gamma }(q,4)=1\).

Therefore, the number \(N_{(2,d_{j},k)}\) of ideals of \(\mathcal {Q}_{j}\) is equal to

$$\begin{array}{@{}rcl@{}} N_{(2,d_{j},k)}&=&k+1+k+{\Omega}_{1}(q,k)+{\Omega}_{2}(q,k)+\frac{1}{2}k(k-1)+(q-1){\Gamma}(q,k)\\ &=&1+\frac{1}{2}k(k+3)+{\Omega}_{1}(q,k)+{\Omega}_{2}(q,k)+(q_{j}-1){\Gamma}(q,k). \end{array} $$

Then by a direct calculation, we deduce that \(N_{(2,d_{j},2\rho )}={\sum }_{i=0}^{\rho }(1+4i)2^{(\rho -i)d_{j}}\) and \(N_{(2,d_{j},2\rho +1)}={\sum }_{i=0}^{\rho }(3+4i)2^{(\rho -i)d_{j}}\) for any positive integer \(\rho \).

Appendix B: Proof of Theorem 4.5

Let \(1\leq j\leq r\), and \(E_{j}\) be an ideal of \({\mathcal {K}}_{j}[u]/\langle u^{k}\rangle \) given by one of the following eight cases:

  1. (i)

    \(E_{j}=\langle u^{k-i}\rangle \), if \(C_{j}=\langle u^{i}\rangle \), where \(0\leq i\leq k\).

  2. (ii)

    \(E_{j}=\langle u^{k-s},2\rangle \), if \(C_{j}=\langle 2u^{s}\rangle \), where \(0\leq s\leq k-1\).

  3. (iii)

    \(E_{j}=\langle u^{k-i}+2u^{k+t-2i}h(x)\rangle \), if \(C_{j}=\langle u^{i}+2u^{t}h(x)\rangle \) where \(h(x)\in ({\mathcal {F}}_{j}[u]/\langle u^{i-t}\rangle )^{\times }\), \(0\leq t<i\leq k-1\) and \(t\geq 2i-k\).

  4. (iv)

    \(E_{j}=\langle u^{i}+2h(x)\rangle \), if \(C_{j}=\langle u^{i}+2h(x)\rangle \) where \(h(x)\in ({\mathcal {F}}_{j}[u]/\langle u^{k-i}\rangle )^{\times }\), \(0<i\leq k-1\) and \(2i>k\).

  5. (v)

    \(E_{j}=\langle u^{i-t}+2h(x),2u^{k-i}\rangle \), if \(C_{i}=\langle u^{i}+2u^{t}h(x)\rangle \) where \(h(x)\in ({\mathcal {F}}_{j}[u]/\langle u^{k-i}\rangle )^{\times }\), \(1\leq t<i\leq k-1\) and \(t<2i-k\).

  6. (vi)

    \(E_{j}=\langle u^{k-s},2u^{k-i}\rangle \), if \(C_{j}=\langle u^{i},2u^{s}\rangle \), where \(0\leq s<i\leq k-1\).

  7. (vii)

    \(E_{j}=\langle u^{k-s}+2u^{k-i-s}h(x)\rangle \), if \(C_{j}=\langle u^{i}+2h(x), 2u^{s}\rangle \), where \(h(x)\in ({\mathcal {F}}_{j}[u]/\langle u^{s}\rangle )^{\times }\), \(1\leq s<i\leq k-1\), \(i+s\leq k-1\).

  8. (viii)

    \(E_{j}=\langle u^{k-s}+2u^{k+t-i-s}h(x), 2u^{k-i}\rangle \), when \(C_{j}=\langle u^{i}+2u^{t}h(x), 2u^{s}\rangle \), where \(h(x)\in ({\mathcal {F}}_{j}[u]/\langle u^{s-t}\rangle )^{\times }\), \(1\leq t<s<i\leq k-1\), \(i+s\leq k+t-1\).

Then by a direct calculation we deduce that \(C_{j}E_{j}=\{a(x)b(x)\mid a(x)\in C_{j}, \ b(x)\in E_{j}\}=\{0\}\). Further, we have \(|C_{j}||E_{j}|=2^{2d_{j}k}\) by Theorem 3.7.

Since \(\sigma _{j}\) is a ring isomorphism from \({\mathcal {K}}_{j}[u]/\langle u^{k}\rangle \) onto \({\mathcal {K}}_{\sigma (j)}[u]/\langle u^{k}\rangle \) define by Lemma 4.4(ii), \(\sigma _{j}(E_{j})\) is an ideal of \({\mathcal {K}}_{\sigma (j)}[u]/\langle u^{k}\rangle \) and \(|\sigma _{j}(E_{j})|=|E_{j}|\). We denote \(D_{\sigma (j)}=\sigma _{j}(E_{j})\). Let \(l=\sigma (j)\). Then \(j=\sigma (l)\) as \(\sigma ^{-1}=\sigma \).

Now, set \({\mathcal {D}}={\sum }_{j=1}^{r}{\Psi }(e_{\sigma (j)}(x) D_{\sigma (j)}) =\bigoplus _{l=1}^{r}{\Psi }(e_{l}(x)D_{l})\) , where D l = σ σ(l)(E σ(l)) is an ideal of \({\mathcal {K}}_{l}[u]/\langle u^{k}\rangle \) since \(\sigma _{\sigma (l)}=\sigma _{l}^{-1}: \mathcal {K}_{\sigma (l)}[u]/\langle u^{k}\rangle \rightarrow \mathcal {K}_{l}[u]/\langle u^{k}\rangle \) . By Theorem 3.4, we see that \({\mathcal {D}}\) is a cyclic code of length n over R.

For any \(1\leq j\leq r\), by Lemma 3.2(iii) we deduce that \(e_{\sigma (j)}(x) D_{\sigma (j)}\) is an ideal of \({\mathcal {A}}_{\sigma (j)}[u]/\langle u^{k}\rangle \). Then we have \(\sigma (D_{\sigma (j)})=\sigma ^{2}(E_{j})=E_{j}\) and \(\sigma (e_{\sigma (j)}(x))=e_{j}(x)\) by Lemma 4.2(iv). Using Lemma 4.3 we deduce

$$\begin{array}{@{}rcl@{}} {\mathcal{C}}\cdot \sigma({\mathcal{D}})&=&(\sum\limits_{j=1}^{r}{\Psi}(e_{j}(x)C_{j}))\cdot \sigma({\sum}_{l=1}^{r}{\Psi}(e_{l}(x)D_{l}))\\ &=&{\Psi}(\sum\limits_{j=1}^{r}(e_{j}(x)C_{j})\cdot \sigma(e_{\sigma(j)}(x)D_{\sigma(j)})) ={\Psi}(\sum\limits_{j=1}^{r}(e_{j}(x)C_{j}) (e_{j}(x)E_{j}))\\ &=&{\Psi}(\sum\limits_{j=1}^{r}e_{j}(x)(C_{j} E_{j})) =\{0\}, \end{array} $$

which implies \({\mathcal {D}}\subseteq {\mathcal {C}}^{\bot _{E}}\) by Lemma 4.1. On the other hand, by Theorems 3.4 and 3.7, we have that \(|{\mathcal {C}}||{\mathcal {D}}|=({\prod }_{j=1}^{r}|C_{j}|)({\prod }_{j=1}^{r}|E_{j}|)={\prod }_{j=1}^{r}(|C_{j}||E_{j}|) ={\prod }_{j=1}^{r}2^{2d_{j}k} =2^{2k{\sum }_{j=1}^{r}d_{j}}=(4^{k})^{n}=|R^{n}|\). Since \(R=\mathbb {Z}_{4}[u]/\langle u^{k}\rangle \) is a finite Frobenius ring, by the theory of linear codes over Frobenius rings (See Dougherty et al. [7]) we deduce that \({\mathcal {C}}^{\bot _{E}}={\mathcal {D}}\).

Finally, we give the generator set of \(D_{\sigma (j)}=\sigma _{j}(E_{j})\), \(1\leq j\leq r\). By Lemma 4.4, we have \(\sigma _{j}(u^{l})=u^{l}\) for all \(0\leq l\leq k\), and for any \(h(x)\in {\mathcal {F}}_{j}[u]/\langle u^{k}\rangle \)

$$\sigma_{j}(h(x))=h(x^{-1})\equiv h(x^{n-1}) \ (\text{mod} \ \overline{f}_{\sigma(j)}(x)),$$

which implies

$$\sigma_{j}(2u^{l}h(x))=2u^{l}h(x^{-1}) \ \text{with} \ h(x^{-1})\in {\mathcal{F}}_{\sigma(j)}[u]/\langle u^{k}\rangle.$$

Then the conclusions follows from (i)–(viii) immediately.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Li, Q. Cyclic codes of odd length over ℤ4 [u] / 〈u k〉. Cryptogr. Commun. 9, 599–624 (2017). https://doi.org/10.1007/s12095-016-0204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-016-0204-7

Keywords

Mathematics Subject Classification (2010)